Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An empirical total survey error decomposition using data combination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F19%3A00505235" target="_blank" >RIV/67985998:_____/19:00505235 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An empirical total survey error decomposition using data combination

  • Popis výsledku v původním jazyce

    Survey error is known to be pervasive and to bias even simple, but important estimates of means, rates, and totals, such as poverty statistics and the unemployment rate. To summarize and analyze the extent, sources, and consequences of survey error, we define empirical counterparts of key components of the Total Survey Error Framework that can be estimated using data combination. Specifically, we estimate total survey error and decompose it into three high level sources of error: representation error, item non-response error and measurement error. We further decompose these sources into lower level sources such as a failure to report a positive amount and errors in amounts conditional on reporting a positive value. For error in dollars paid by two large government transfer programs, we use administrative records on the universe of program payments in New York State linked to three major household surveys to estimate the error components we define. We find that total survey error is large and varies in its size and composition, but measurement error is always by far the largest source of error. Our application shows that data combination makes it possible to routinely measure total survey error and its components. The results allow survey producers to assess error reduction strategies and survey users to mitigate the consequences of survey errors or gauge the reliability of their conclusions.

  • Název v anglickém jazyce

    An empirical total survey error decomposition using data combination

  • Popis výsledku anglicky

    Survey error is known to be pervasive and to bias even simple, but important estimates of means, rates, and totals, such as poverty statistics and the unemployment rate. To summarize and analyze the extent, sources, and consequences of survey error, we define empirical counterparts of key components of the Total Survey Error Framework that can be estimated using data combination. Specifically, we estimate total survey error and decompose it into three high level sources of error: representation error, item non-response error and measurement error. We further decompose these sources into lower level sources such as a failure to report a positive amount and errors in amounts conditional on reporting a positive value. For error in dollars paid by two large government transfer programs, we use administrative records on the universe of program payments in New York State linked to three major household surveys to estimate the error components we define. We find that total survey error is large and varies in its size and composition, but measurement error is always by far the largest source of error. Our application shows that data combination makes it possible to routinely measure total survey error and its components. The results allow survey producers to assess error reduction strategies and survey users to mitigate the consequences of survey errors or gauge the reliability of their conclusions.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů