Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F15%3A00442416" target="_blank" >RIV/68081707:_____/15:00442416 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/15:00080645
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c4cp04680c" target="_blank" >http://dx.doi.org/10.1039/c4cp04680c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c4cp04680c" target="_blank" >10.1039/c4cp04680c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions
Popis výsledku v původním jazyce
Recent developments in dispersion-corrected density functional theory methods allow for the first time the description of large fragments of nucleic acids (hundreds of atoms) with an accuracy clearly surpassing the accuracy of common biomolecular force fields. Such calculations can significantly improve the description of the potential energy surface of nucleic acid molecules, which may be useful for studies of molecular interactions and conformational preferences of nucleic acids, as well as verification and parameterization of other methods. The first of such studies, however, demonstrated that successful applications of accurate QM calculations to larger nucleic acid building blocks are hampered by difficulties in obtaining geometries that are biochemically relevant and are not biased by non-native structural features. We present an approach that can greatly facilitate large-scale QM studies on nucleic acids, namely electronic structure geometry optimization of nucleic acid fragment
Název v anglickém jazyce
Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions
Popis výsledku anglicky
Recent developments in dispersion-corrected density functional theory methods allow for the first time the description of large fragments of nucleic acids (hundreds of atoms) with an accuracy clearly surpassing the accuracy of common biomolecular force fields. Such calculations can significantly improve the description of the potential energy surface of nucleic acid molecules, which may be useful for studies of molecular interactions and conformational preferences of nucleic acids, as well as verification and parameterization of other methods. The first of such studies, however, demonstrated that successful applications of accurate QM calculations to larger nucleic acid building blocks are hampered by difficulties in obtaining geometries that are biochemically relevant and are not biased by non-native structural features. We present an approach that can greatly facilitate large-scale QM studies on nucleic acids, namely electronic structure geometry optimization of nucleic acid fragment
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BO - Biofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1399-1410
Kód UT WoS článku
000346236000078
EID výsledku v databázi Scopus
—