Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F17%3A00485594" target="_blank" >RIV/68081707:_____/17:00485594 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1039/c7cp03663a" target="_blank" >http://dx.doi.org/10.1039/c7cp03663a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c7cp03663a" target="_blank" >10.1039/c7cp03663a</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts

  • Popis výsledku v původním jazyce

    We report on a series of ab initio molecular dynamics investigations on LiCl, NaCl, and KCl aqueous solutions under the effect of static electric fields. We have found that although in low-to-moderate field intensity regimes the well-known sequence of cationic mobilities mu(K+) > mu(Na+) > mu(Li+) (i.e., the bigger the cation the higher the mobility) is recovered, from intense field strengths this intuitive rule is no longer verified. In fact, field-induced water molecular dissociations lead to more complex phenomena regulating the standard migration properties of the simplest monovalent cations. The water dissociation threshold is lowered from 0.35 V angstrom(-1) to 0.25 V angstrom(-1) by the presence of charged species in all samples. However, notwithstanding a one-stage process of water ionization and proton conduction takes place at 0.25 V angstrom(-1) in the electrolyte solutions where structure maker' cations are present (i.e., LiCl and NaCl), the KCl aqueous solution shows some hindrance in establishing a proton conductive regime, which is characterized by the same proton conduction threshold of neat water (i.e., 0.35 V angstrom(-1)). In addition, it turns out that protons flow easily in the LiCl (sp = 3.0 S cm(-1)) solution and then in descending order in the NaCl (sp = 2.5 S cm(-1)) and KCl (sp = 2.3 S cm(-1)) electrolyte solutions. The protonic conduction efficiency is thus inversely proportional to the ionic radii of the cations present in the samples. Moreover, Cl- anions act as a sort of protonic well for high field intensities, further lowering the overall proton transfer efficiency of the aqueous solutions. As a consequence, all the recorded protonic conductivities are lower than that for neat water (sp = 7.8 S cm(-1)), which strongly indicates that devices exploiting the proton transfer ability should be designed so as to minimize the presence of ionic impurities.

  • Název v anglickém jazyce

    Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts

  • Popis výsledku anglicky

    We report on a series of ab initio molecular dynamics investigations on LiCl, NaCl, and KCl aqueous solutions under the effect of static electric fields. We have found that although in low-to-moderate field intensity regimes the well-known sequence of cationic mobilities mu(K+) > mu(Na+) > mu(Li+) (i.e., the bigger the cation the higher the mobility) is recovered, from intense field strengths this intuitive rule is no longer verified. In fact, field-induced water molecular dissociations lead to more complex phenomena regulating the standard migration properties of the simplest monovalent cations. The water dissociation threshold is lowered from 0.35 V angstrom(-1) to 0.25 V angstrom(-1) by the presence of charged species in all samples. However, notwithstanding a one-stage process of water ionization and proton conduction takes place at 0.25 V angstrom(-1) in the electrolyte solutions where structure maker' cations are present (i.e., LiCl and NaCl), the KCl aqueous solution shows some hindrance in establishing a proton conductive regime, which is characterized by the same proton conduction threshold of neat water (i.e., 0.35 V angstrom(-1)). In addition, it turns out that protons flow easily in the LiCl (sp = 3.0 S cm(-1)) solution and then in descending order in the NaCl (sp = 2.5 S cm(-1)) and KCl (sp = 2.3 S cm(-1)) electrolyte solutions. The protonic conduction efficiency is thus inversely proportional to the ionic radii of the cations present in the samples. Moreover, Cl- anions act as a sort of protonic well for high field intensities, further lowering the overall proton transfer efficiency of the aqueous solutions. As a consequence, all the recorded protonic conductivities are lower than that for neat water (sp = 7.8 S cm(-1)), which strongly indicates that devices exploiting the proton transfer ability should be designed so as to minimize the presence of ionic impurities.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    31

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    20420-20429

  • Kód UT WoS článku

    000407763700011

  • EID výsledku v databázi Scopus