Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F17%3A00485637" target="_blank" >RIV/68081707:_____/17:00485637 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c7cp02635h" target="_blank" >http://dx.doi.org/10.1039/c7cp02635h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7cp02635h" target="_blank" >10.1039/c7cp02635h</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine
Popis výsledku v původním jazyce
Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantumchemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet n pi* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the n pi*(CT) state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the n pi*(CT) surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.
Název v anglickém jazyce
Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine
Popis výsledku anglicky
Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantumchemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet n pi* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the n pi*(CT) state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the n pi*(CT) surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
27
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
17531-17537
Kód UT WoS článku
000405424100005
EID výsledku v databázi Scopus
—