Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F18%3A00501653" target="_blank" >RIV/68081707:_____/18:00501653 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pcbi.1006642" target="_blank" >http://dx.doi.org/10.1371/journal.pcbi.1006642</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pcbi.1006642" target="_blank" >10.1371/journal.pcbi.1006642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study
Popis výsledku v původním jazyce
The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox. pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations.
Název v anglickém jazyce
Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study
Popis výsledku anglicky
The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox. pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP305%2F12%2FG034" target="_blank" >GBP305/12/G034: Centrum biologie RNA</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS Computational Biology
ISSN
1553-7358
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000454835100039
EID výsledku v databázi Scopus
—