Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F19%3A00501549" target="_blank" >RIV/68081707:_____/19:00501549 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/19:73597467

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1021/acs.jctc.8b00643" target="_blank" >http://dx.doi.org/10.1021/acs.jctc.8b00643</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.8b00643" target="_blank" >10.1021/acs.jctc.8b00643</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects

  • Popis výsledku v původním jazyce

    The stacking energies of 10 unique B-DNA base-pair steps were calculated with highly accurate quantum chemistry and used as reference values in a thorough benchmark of (dispersion-corrected) DFT, wave function methods, tight-binding methods, and different force fields, including charge variants thereof. The reference values were computed using a focal-point energy function based on extrapolated explicitly correlated MP2-F12 and conventional CCSD(T) data at the triple-zeta level. A collection of 29 different density functionals, sometimes with multiple dispersion corrections (D3(BJ), D3M(BJ), and VV10) were evaluated, including recent functionals like B97M-V, omega B97M-V, and SCAN-D3(BJ), which perform excellently. The double-hybrid DSD-BLYP-NL was found to be the best DFT method. Common wave function methods (MP2, SCS-MP2, and MP2.5) and the SNS-MP2 protocol were tested as well, where only the latter and DLPNO-CCSD(T)/CBS were competitive with DFT. The tight-binding methods DFTB3-D3 and GFN-xTB revealed a comparatively low accuracy. The AMBER force field outperformed CHARMM and GROMOS but still showed systematic gas-phase overbinding, which could be traced back to the electrostatic term, as revealed by comparison of different sets of point charges. High-order SAPT, e.g., SAPT2 + 3 delta(MP2), was not only benchmarked but also used to study the nature of the stacking interactions to high accuracy. The delta(MP2) term turned out to be crucially important to reach high accuracy. Finally, we investigated four-body stacking effects with DLPNO-CCSD(T) and DFT, which were found to be significant and strongest for the CpC base-pair step where they reached almost 30% of the total stacking energy.

  • Název v anglickém jazyce

    Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects

  • Popis výsledku anglicky

    The stacking energies of 10 unique B-DNA base-pair steps were calculated with highly accurate quantum chemistry and used as reference values in a thorough benchmark of (dispersion-corrected) DFT, wave function methods, tight-binding methods, and different force fields, including charge variants thereof. The reference values were computed using a focal-point energy function based on extrapolated explicitly correlated MP2-F12 and conventional CCSD(T) data at the triple-zeta level. A collection of 29 different density functionals, sometimes with multiple dispersion corrections (D3(BJ), D3M(BJ), and VV10) were evaluated, including recent functionals like B97M-V, omega B97M-V, and SCAN-D3(BJ), which perform excellently. The double-hybrid DSD-BLYP-NL was found to be the best DFT method. Common wave function methods (MP2, SCS-MP2, and MP2.5) and the SNS-MP2 protocol were tested as well, where only the latter and DLPNO-CCSD(T)/CBS were competitive with DFT. The tight-binding methods DFTB3-D3 and GFN-xTB revealed a comparatively low accuracy. The AMBER force field outperformed CHARMM and GROMOS but still showed systematic gas-phase overbinding, which could be traced back to the electrostatic term, as revealed by comparison of different sets of point charges. High-order SAPT, e.g., SAPT2 + 3 delta(MP2), was not only benchmarked but also used to study the nature of the stacking interactions to high accuracy. The delta(MP2) term turned out to be crucially important to reach high accuracy. Finally, we investigated four-body stacking effects with DLPNO-CCSD(T) and DFT, which were found to be significant and strongest for the CpC base-pair step where they reached almost 30% of the total stacking energy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    95-115

  • Kód UT WoS článku

    000455558200012

  • EID výsledku v databázi Scopus