Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F19%3A00518366" target="_blank" >RIV/68081707:_____/19:00518366 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/19:43899736 RIV/61989592:15110/19:73596142
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201900314" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201900314</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elan.201900314" target="_blank" >10.1002/elan.201900314</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study
Popis výsledku v původním jazyce
Biopolymer immobilization strategies, self-assembly systems and adsorption phenomenon in general are crucial for the development of methods that work on the basis of the surface-detection principle, including electrochemistry. A mechanistic view into the interaction of biopolymers with electrode surfaces is also important for studying fundamental and dynamic processes such as electron/proton transport. In this sense, the utilization of new approaches for investigating the interfacial behavior of immobilized biomolecular architectures is a permanent focus. Here we use a molecular dynamics (MD) approach to simulate the structural changes and metallic surface interactions of a model 21-mer peptide of His (H) and Ala (A), A(3)(HA(2))(6), a peptidic proton wire (H-wire). This H-wire was previously proposed for the electrochemical study of proton transfer at mercury electrodes (Langmuir, 2018, 34, 6997). The rigid solid mercury mono-atomic layer (alpha-mercury lattice model) was used systematically in all our simulations. The calculations were performed in a simulation box with 1, 16 and 32 H-wire strands attached covalently to the mercury layer via the thiol group of a cysteinamide residue appended to the H-wire C-terminus. The internal alpha-helical configuration of H-wires was maintained by the presence of 2,2,2-trifluoroethanol. It was shown that both the surface density of H-wires and the protonation state of His residues play a decisive role in the structural stability and orientation of the peptide to the surface, whereas the applied voltage only has a mild effect on it, especially in case of 16 and 32 H-wire strand configurations. The MD simulations presented here could be used for the further investigation of other peptides at metallic surfaces and for electrochemical analyses of structural changes of surface-attached peptides that depend on their protonation states and other external factors.
Název v anglickém jazyce
Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study
Popis výsledku anglicky
Biopolymer immobilization strategies, self-assembly systems and adsorption phenomenon in general are crucial for the development of methods that work on the basis of the surface-detection principle, including electrochemistry. A mechanistic view into the interaction of biopolymers with electrode surfaces is also important for studying fundamental and dynamic processes such as electron/proton transport. In this sense, the utilization of new approaches for investigating the interfacial behavior of immobilized biomolecular architectures is a permanent focus. Here we use a molecular dynamics (MD) approach to simulate the structural changes and metallic surface interactions of a model 21-mer peptide of His (H) and Ala (A), A(3)(HA(2))(6), a peptidic proton wire (H-wire). This H-wire was previously proposed for the electrochemical study of proton transfer at mercury electrodes (Langmuir, 2018, 34, 6997). The rigid solid mercury mono-atomic layer (alpha-mercury lattice model) was used systematically in all our simulations. The calculations were performed in a simulation box with 1, 16 and 32 H-wire strands attached covalently to the mercury layer via the thiol group of a cysteinamide residue appended to the H-wire C-terminus. The internal alpha-helical configuration of H-wires was maintained by the presence of 2,2,2-trifluoroethanol. It was shown that both the surface density of H-wires and the protonation state of His residues play a decisive role in the structural stability and orientation of the peptide to the surface, whereas the applied voltage only has a mild effect on it, especially in case of 16 and 32 H-wire strand configurations. The MD simulations presented here could be used for the further investigation of other peptides at metallic surfaces and for electrochemical analyses of structural changes of surface-attached peptides that depend on their protonation states and other external factors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA17163" target="_blank" >LTAUSA17163: Molekulární simulace procesů na rozhraní pevná látka - kapalina</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electroanalysis
ISSN
1040-0397
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
2032-2040
Kód UT WoS článku
000479714500001
EID výsledku v databázi Scopus
—