Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F19%3A00518366" target="_blank" >RIV/68081707:_____/19:00518366 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/19:43899736 RIV/61989592:15110/19:73596142

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201900314" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201900314</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/elan.201900314" target="_blank" >10.1002/elan.201900314</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study

  • Popis výsledku v původním jazyce

    Biopolymer immobilization strategies, self-assembly systems and adsorption phenomenon in general are crucial for the development of methods that work on the basis of the surface-detection principle, including electrochemistry. A mechanistic view into the interaction of biopolymers with electrode surfaces is also important for studying fundamental and dynamic processes such as electron/proton transport. In this sense, the utilization of new approaches for investigating the interfacial behavior of immobilized biomolecular architectures is a permanent focus. Here we use a molecular dynamics (MD) approach to simulate the structural changes and metallic surface interactions of a model 21-mer peptide of His (H) and Ala (A), A(3)(HA(2))(6), a peptidic proton wire (H-wire). This H-wire was previously proposed for the electrochemical study of proton transfer at mercury electrodes (Langmuir, 2018, 34, 6997). The rigid solid mercury mono-atomic layer (alpha-mercury lattice model) was used systematically in all our simulations. The calculations were performed in a simulation box with 1, 16 and 32 H-wire strands attached covalently to the mercury layer via the thiol group of a cysteinamide residue appended to the H-wire C-terminus. The internal alpha-helical configuration of H-wires was maintained by the presence of 2,2,2-trifluoroethanol. It was shown that both the surface density of H-wires and the protonation state of His residues play a decisive role in the structural stability and orientation of the peptide to the surface, whereas the applied voltage only has a mild effect on it, especially in case of 16 and 32 H-wire strand configurations. The MD simulations presented here could be used for the further investigation of other peptides at metallic surfaces and for electrochemical analyses of structural changes of surface-attached peptides that depend on their protonation states and other external factors.

  • Název v anglickém jazyce

    Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study

  • Popis výsledku anglicky

    Biopolymer immobilization strategies, self-assembly systems and adsorption phenomenon in general are crucial for the development of methods that work on the basis of the surface-detection principle, including electrochemistry. A mechanistic view into the interaction of biopolymers with electrode surfaces is also important for studying fundamental and dynamic processes such as electron/proton transport. In this sense, the utilization of new approaches for investigating the interfacial behavior of immobilized biomolecular architectures is a permanent focus. Here we use a molecular dynamics (MD) approach to simulate the structural changes and metallic surface interactions of a model 21-mer peptide of His (H) and Ala (A), A(3)(HA(2))(6), a peptidic proton wire (H-wire). This H-wire was previously proposed for the electrochemical study of proton transfer at mercury electrodes (Langmuir, 2018, 34, 6997). The rigid solid mercury mono-atomic layer (alpha-mercury lattice model) was used systematically in all our simulations. The calculations were performed in a simulation box with 1, 16 and 32 H-wire strands attached covalently to the mercury layer via the thiol group of a cysteinamide residue appended to the H-wire C-terminus. The internal alpha-helical configuration of H-wires was maintained by the presence of 2,2,2-trifluoroethanol. It was shown that both the surface density of H-wires and the protonation state of His residues play a decisive role in the structural stability and orientation of the peptide to the surface, whereas the applied voltage only has a mild effect on it, especially in case of 16 and 32 H-wire strand configurations. The MD simulations presented here could be used for the further investigation of other peptides at metallic surfaces and for electrochemical analyses of structural changes of surface-attached peptides that depend on their protonation states and other external factors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAUSA17163" target="_blank" >LTAUSA17163: Molekulární simulace procesů na rozhraní pevná látka - kapalina</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electroanalysis

  • ISSN

    1040-0397

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    9

  • Strana od-do

    2032-2040

  • Kód UT WoS článku

    000479714500001

  • EID výsledku v databázi Scopus