W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F21%3A00554903" target="_blank" >RIV/68081707:_____/21:00554903 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/21:73607214 RIV/61989592:15310/21:73607214
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jctc.0c00976" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.0c00976</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.0c00976" target="_blank" >10.1021/acs.jctc.0c00976</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model
Popis výsledku v původním jazyce
Representation of electrostatic interactions by a Coulombic pairwise potential between atom-centered partial charges is a fundamental and crucial part of empirical force fields used in classical molecular dynamics simulations. The broad success of the AMBER force-field family originates mainly from the restrained electrostatic potential (RESP) charge model, which derives partial charges to reproduce the electrostatic field around the molecules. However, the description of the electrostatic potential around molecules by standard RESP may be biased for some types of molecules. In this study, we modified the RESP charge derivation model to improve its description of the electrostatic potential around molecules and thus electrostatic interactions in the force field. In particular, we reoptimized the atomic radii for definition of the grid points around the molecule, redesigned the restraining scheme, and included extra point (EP) charges. The RESP fitting was significantly improved for aromatic heterocyclic molecules. Thus, the suggested W-RESP(-EP) charge derivation model shows some potential for improving the performance of the nucleic acid force fields, for which the poor description of nonbonded interactions, such as the underestimated stability of base pairing, is well-established. We also report some preliminary simulation tests (around 1 ms of simulation data) on A-RNA duplexes, tetranucleotides, and tetraloops. The simulations reveal no adverse effects, while the description of base-pairing interactions might be improved. The new charges can thus be used in future attempts to improve the nucleic acid simulation force fields, in combination with reparametrization of the other terms.
Název v anglickém jazyce
W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model
Popis výsledku anglicky
Representation of electrostatic interactions by a Coulombic pairwise potential between atom-centered partial charges is a fundamental and crucial part of empirical force fields used in classical molecular dynamics simulations. The broad success of the AMBER force-field family originates mainly from the restrained electrostatic potential (RESP) charge model, which derives partial charges to reproduce the electrostatic field around the molecules. However, the description of the electrostatic potential around molecules by standard RESP may be biased for some types of molecules. In this study, we modified the RESP charge derivation model to improve its description of the electrostatic potential around molecules and thus electrostatic interactions in the force field. In particular, we reoptimized the atomic radii for definition of the grid points around the molecule, redesigned the restraining scheme, and included extra point (EP) charges. The RESP fitting was significantly improved for aromatic heterocyclic molecules. Thus, the suggested W-RESP(-EP) charge derivation model shows some potential for improving the performance of the nucleic acid force fields, for which the poor description of nonbonded interactions, such as the underestimated stability of base pairing, is well-established. We also report some preliminary simulation tests (around 1 ms of simulation data) on A-RNA duplexes, tetranucleotides, and tetraloops. The simulations reveal no adverse effects, while the description of base-pairing interactions might be improved. The new charges can thus be used in future attempts to improve the nucleic acid simulation force fields, in combination with reparametrization of the other terms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-16554S" target="_blank" >GA20-16554S: Molekulové modelování RNA molekul a jejích komplexů: Úloha strukturní dynamiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
1549-9626
Svazek periodika
17
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
3495-3509
Kód UT WoS článku
000661542700023
EID výsledku v databázi Scopus
2-s2.0-85108021210