Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00564039" target="_blank" >RIV/68081707:_____/22:00564039 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2311-7524/8/10/974" target="_blank" >https://www.mdpi.com/2311-7524/8/10/974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/horticulturae8100974" target="_blank" >10.3390/horticulturae8100974</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology
Popis výsledku v původním jazyce
Historically, little attention has been paid to the resemblance between seed silhouettes to geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals, superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for quantification. Algebraic expressions representing the average silhouettes for a group of seeds are available, and their shape can be described and quantified by comparison with geometric models. Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric properties of the silhouettes from seed images and discuss them in the context of seed development, plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed morphology. Three groups have been recently defined among Silene species based on the structure of their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier Transform equations is useful in Silene species where the seeds are homogenous in shape but don't adjust to described figures.
Název v anglickém jazyce
Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology
Popis výsledku anglicky
Historically, little attention has been paid to the resemblance between seed silhouettes to geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals, superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for quantification. Algebraic expressions representing the average silhouettes for a group of seeds are available, and their shape can be described and quantified by comparison with geometric models. Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric properties of the silhouettes from seed images and discuss them in the context of seed development, plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed morphology. Three groups have been recently defined among Silene species based on the structure of their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier Transform equations is useful in Silene species where the seeds are homogenous in shape but don't adjust to described figures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
HORTICULTURAE
ISSN
2311-7524
e-ISSN
2311-7524
Svazek periodika
8
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
974
Kód UT WoS článku
000875953600001
EID výsledku v databázi Scopus
2-s2.0-85140626905