Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00564039" target="_blank" >RIV/68081707:_____/22:00564039 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2311-7524/8/10/974" target="_blank" >https://www.mdpi.com/2311-7524/8/10/974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/horticulturae8100974" target="_blank" >10.3390/horticulturae8100974</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology

  • Popis výsledku v původním jazyce

    Historically, little attention has been paid to the resemblance between seed silhouettes to geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals, superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for quantification. Algebraic expressions representing the average silhouettes for a group of seeds are available, and their shape can be described and quantified by comparison with geometric models. Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric properties of the silhouettes from seed images and discuss them in the context of seed development, plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed morphology. Three groups have been recently defined among Silene species based on the structure of their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier Transform equations is useful in Silene species where the seeds are homogenous in shape but don't adjust to described figures.

  • Název v anglickém jazyce

    Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology

  • Popis výsledku anglicky

    Historically, little attention has been paid to the resemblance between seed silhouettes to geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals, superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for quantification. Algebraic expressions representing the average silhouettes for a group of seeds are available, and their shape can be described and quantified by comparison with geometric models. Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric properties of the silhouettes from seed images and discuss them in the context of seed development, plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed morphology. Three groups have been recently defined among Silene species based on the structure of their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier Transform equations is useful in Silene species where the seeds are homogenous in shape but don't adjust to described figures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    HORTICULTURAE

  • ISSN

    2311-7524

  • e-ISSN

    2311-7524

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    974

  • Kód UT WoS článku

    000875953600001

  • EID výsledku v databázi Scopus

    2-s2.0-85140626905