Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00569822" target="_blank" >RIV/68081707:_____/22:00569822 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26620/22:PU147343 RIV/00216208:11140/22:10453304

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2213956722001876?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213956722001876?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jma.2022.07.019" target="_blank" >10.1016/j.jma.2022.07.019</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms

  • Popis výsledku v původním jazyce

    This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite (Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric, and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

  • Název v anglickém jazyce

    Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms

  • Popis výsledku anglicky

    This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite (Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric, and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Magnesium and Alloys

  • ISSN

    2213-9567

  • e-ISSN

    2213-9567

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    CN - Čínská lidová republika

  • Počet stran výsledku

    16

  • Strana od-do

    3641-3656

  • Kód UT WoS článku

    000911252800025

  • EID výsledku v databázi Scopus

    2-s2.0-85138802324