Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00569822" target="_blank" >RIV/68081707:_____/22:00569822 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/22:PU147343 RIV/00216208:11140/22:10453304
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2213956722001876?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213956722001876?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jma.2022.07.019" target="_blank" >10.1016/j.jma.2022.07.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms
Popis výsledku v původním jazyce
This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite (Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric, and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University
Název v anglickém jazyce
Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms
Popis výsledku anglicky
This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite (Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric, and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnesium and Alloys
ISSN
2213-9567
e-ISSN
2213-9567
Svazek periodika
10
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
16
Strana od-do
3641-3656
Kód UT WoS článku
000911252800025
EID výsledku v databázi Scopus
2-s2.0-85138802324