New Techniques for Seed Shape Description in Silene Species
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00604180" target="_blank" >RIV/68081707:_____/22:00604180 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2673-6500/2/1/1" target="_blank" >https://www.mdpi.com/2673-6500/2/1/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/taxonomy2010001" target="_blank" >10.3390/taxonomy2010001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Techniques for Seed Shape Description in Silene Species
Popis výsledku v původním jazyce
Seed shape in Silene species is often described by means of adjectives such as reniform, globose, and orbicular, but the application of seed shape for species classification requires quantification. A method for the description and quantification of seed shape consists in the comparison with geometric models. Geometric models based on mathematical equations were applied to characterize the general morphology of the seeds in 21 species of Silene. In addition to the previously described four models (M1 is the cardioid, and M2 to M4 are figures derived from it), we present four new geometric models (model 5-8). Models 5 and 6 are open cardioids that resemble M3, quite different from the flat models, M2 and M4. Models 7 and 8 were applied to those species not covered by models 2 to 6. Morphological measures were obtained to describe and characterize the dorsal view of the seeds. The analyses done on dorsal views revealed a notable morphological diversity and four groups were identified. A correlation was found between roundness of dorsal view and the geometric models based on lateral views, such that some of the groups defined by seed roundness are also characterized by the similarity to particular models. The usefulness of new morphological tools of seed morphology to taxonomy is discussed.
Název v anglickém jazyce
New Techniques for Seed Shape Description in Silene Species
Popis výsledku anglicky
Seed shape in Silene species is often described by means of adjectives such as reniform, globose, and orbicular, but the application of seed shape for species classification requires quantification. A method for the description and quantification of seed shape consists in the comparison with geometric models. Geometric models based on mathematical equations were applied to characterize the general morphology of the seeds in 21 species of Silene. In addition to the previously described four models (M1 is the cardioid, and M2 to M4 are figures derived from it), we present four new geometric models (model 5-8). Models 5 and 6 are open cardioids that resemble M3, quite different from the flat models, M2 and M4. Models 7 and 8 were applied to those species not covered by models 2 to 6. Morphological measures were obtained to describe and characterize the dorsal view of the seeds. The analyses done on dorsal views revealed a notable morphological diversity and four groups were identified. A correlation was found between roundness of dorsal view and the geometric models based on lateral views, such that some of the groups defined by seed roundness are also characterized by the similarity to particular models. The usefulness of new morphological tools of seed morphology to taxonomy is discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
TAXONOMY
ISSN
2673-6500
e-ISSN
2673-6500
Svazek periodika
2
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001281837500001
EID výsledku v databázi Scopus
2-s2.0-85127194827