Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081715%3A_____%2F23%3A00574423" target="_blank" >RIV/68081715:_____/23:00574423 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.3c01043" target="_blank" >https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.3c01043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.analchem.3c01043" target="_blank" >10.1021/acs.analchem.3c01043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
Popis výsledku v původním jazyce
Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). Particles emitting two emission wavelengths appear as double spots in the MPS images. The counting of double spots per MPS image is principally comparable to the cross-correlation amplitude in cross-correlation spectroscopy─both quantities can be used for quantification. However, MPS possesses much larger detection volumes and operates digitally, MPS can scan approximately 103× larger volume of dispersion in the same unit of time. These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L–1) and the linearity range (4.8 fmol L–1 to 40 pmol L–1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L–1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 μm deep microfluidic channel. Because MPS is a new technique, the applications are only limited by the imagination and the persistence of the experimenter. Besides characterizing freely diffusing molecules and nanoparticles of diverse types, we speculate on homogeneous immunochemical assays and ratiometric nanosensors for high-throughput microfluidics. Additional imaging modalities like fluorescence, dark-field, and bright-field are of high interest.
Název v anglickém jazyce
Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
Popis výsledku anglicky
Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). Particles emitting two emission wavelengths appear as double spots in the MPS images. The counting of double spots per MPS image is principally comparable to the cross-correlation amplitude in cross-correlation spectroscopy─both quantities can be used for quantification. However, MPS possesses much larger detection volumes and operates digitally, MPS can scan approximately 103× larger volume of dispersion in the same unit of time. These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L–1) and the linearity range (4.8 fmol L–1 to 40 pmol L–1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L–1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 μm deep microfluidic channel. Because MPS is a new technique, the applications are only limited by the imagination and the persistence of the experimenter. Besides characterizing freely diffusing molecules and nanoparticles of diverse types, we speculate on homogeneous immunochemical assays and ratiometric nanosensors for high-throughput microfluidics. Additional imaging modalities like fluorescence, dark-field, and bright-field are of high interest.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytical Chemistry
ISSN
0003-2700
e-ISSN
1520-6882
Svazek periodika
95
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
12256-12263
Kód UT WoS článku
001043684300001
EID výsledku v databázi Scopus
2-s2.0-85168364256