Degradation processes in high-temperature creep of cast cobalt-based superalloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00492304" target="_blank" >RIV/68081723:_____/18:00492304 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60193247:_____/18:N0000014
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.matchar.2018.08.006" target="_blank" >http://dx.doi.org/10.1016/j.matchar.2018.08.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matchar.2018.08.006" target="_blank" >10.1016/j.matchar.2018.08.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degradation processes in high-temperature creep of cast cobalt-based superalloys
Popis výsledku v původním jazyce
Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking).
Název v anglickém jazyce
Degradation processes in high-temperature creep of cast cobalt-based superalloys
Popis výsledku anglicky
Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Characterization
ISSN
1044-5803
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
479-489
Kód UT WoS článku
000447477300049
EID výsledku v databázi Scopus
2-s2.0-85051001566