An Integration of 3D Discrete Dislocation Dynamics with Numerical Tensile Testing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00500894" target="_blank" >RIV/68081723:_____/18:00500894 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.12693/APhysPolA.134.779" target="_blank" >http://dx.doi.org/10.12693/APhysPolA.134.779</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12693/APhysPolA.134.779" target="_blank" >10.12693/APhysPolA.134.779</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Integration of 3D Discrete Dislocation Dynamics with Numerical Tensile Testing
Popis výsledku v původním jazyce
Design of materials for severe high temperature mechanical exposures can be assisted by a newly developed 3D discrete dislocation dynamics model which can be tailored for a numerical simulation of hot tensile tests. The 3D discrete dislocation dynamics model is based upon the linear theory of elasticity. The dislocation structure is represented by short straight segments. This allows a straightforward calculation of the stress fields and, subsequently, the driving forces at any point in the simulation cell as a linear sum of stress contributions of individual dislocation segments, osmotic forces, externally applied stress, misfit stresses, the Peierls stress etc. Furthermore, the model addresses interaction between dislocation segments and rigid incoherent spherical precipitates. The dislocation displacement is calculated from the equations of motion, which address both dislocation glide and climb. The external loadings enter the model as an applied strain during a tensile test, from which the resolved shear stress is calculated. The resolved shear stress is calculated from the Hooke law and it is constant throughout the simulated volume during one integration step. Furthermore, a benchmark study is performed in which the 3D discrete dislocation dynamics model of the tensile test focuses on a migration of a low angle dislocation boundary in a field of rigid spherical precipitates. Obtained results are compared to former calculations during which the applied stress was kept constant.
Název v anglickém jazyce
An Integration of 3D Discrete Dislocation Dynamics with Numerical Tensile Testing
Popis výsledku anglicky
Design of materials for severe high temperature mechanical exposures can be assisted by a newly developed 3D discrete dislocation dynamics model which can be tailored for a numerical simulation of hot tensile tests. The 3D discrete dislocation dynamics model is based upon the linear theory of elasticity. The dislocation structure is represented by short straight segments. This allows a straightforward calculation of the stress fields and, subsequently, the driving forces at any point in the simulation cell as a linear sum of stress contributions of individual dislocation segments, osmotic forces, externally applied stress, misfit stresses, the Peierls stress etc. Furthermore, the model addresses interaction between dislocation segments and rigid incoherent spherical precipitates. The dislocation displacement is calculated from the equations of motion, which address both dislocation glide and climb. The external loadings enter the model as an applied strain during a tensile test, from which the resolved shear stress is calculated. The resolved shear stress is calculated from the Hooke law and it is constant throughout the simulated volume during one integration step. Furthermore, a benchmark study is performed in which the 3D discrete dislocation dynamics model of the tensile test focuses on a migration of a low angle dislocation boundary in a field of rigid spherical precipitates. Obtained results are compared to former calculations during which the applied stress was kept constant.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Physica Polonica. A
ISSN
0587-4246
e-ISSN
—
Svazek periodika
134
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
4
Strana od-do
779-782
Kód UT WoS článku
000453257500038
EID výsledku v databázi Scopus
2-s2.0-85058952869