Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F19%3A00492417" target="_blank" >RIV/68081723:_____/19:00492417 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/19:00492417 RIV/00216305:26620/19:PU128713 RIV/00216224:14310/19:00109263
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmmm.2018.08.027" target="_blank" >http://dx.doi.org/10.1016/j.jmmm.2018.08.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmmm.2018.08.027" target="_blank" >10.1016/j.jmmm.2018.08.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites
Popis výsledku v původním jazyce
We studied the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites formed by Fe nanowires embedded in the fcc Pd, Ptnor Cu matrix. The Fe atoms form nanowires oriented along the [0 0 1] crystallographic direction. They replacensecond nearest neighbor atoms in the matrix. By means of varying the distance between the nanowires wenarrived to the chemical compositions X15Fe, X8Fe and X7Fe where X stands for Pd, Pt and Cu. The mechanicalnand magnetic properties of the nanocomposites were obtained by ab initio simulations. We performed tensilenand compressive tests along the [0 0 1] direction and compared the results with the deformation behavior of thenfcc matrix and the known intermetallic compounds FePd3 and FePt3. It turned out that the maximum attainablenstress for the Fe−Pd and Fe−Pt nanocomposites is higher than the stress attainable for the Pd and Pt matrices.nThe maximum stress increased with the increasing Fe content. The increase was due to the enhanced stability innthe nanocomposites described by the C11−C12 > 0 condition. This effect was particularly pronounced in thenFe−Pt nanocomposites. On the contrary, the Fe nanowires in the Fe−Cu nanocomposites do not enhance thenstability and strength of the Cu matrix. They even make the Cu matrix more compliant to compression.nRegarding the magnetic ground states, the Fe−Pd and Fe−Pt nanocomposites prefer a ferromagnetic configurationnwhere the spins of all Fe atoms are oriented in parallel manner. On the other hand, the Fe−Cu nanocompositesnexhibit an antiferromagnetic configuration where the spins of all Fe atoms assigned to a particularnnanowire are oriented parallel, but antiparallel to the spins of a neighboring Fe nanowire. The Young modulusnE001 along the [0 0 1] crystallographic direction increases linearly with the Fe content in both the Fe−Pd andnFe−Pt nanocomposites.
Název v anglickém jazyce
Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites
Popis výsledku anglicky
We studied the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites formed by Fe nanowires embedded in the fcc Pd, Ptnor Cu matrix. The Fe atoms form nanowires oriented along the [0 0 1] crystallographic direction. They replacensecond nearest neighbor atoms in the matrix. By means of varying the distance between the nanowires wenarrived to the chemical compositions X15Fe, X8Fe and X7Fe where X stands for Pd, Pt and Cu. The mechanicalnand magnetic properties of the nanocomposites were obtained by ab initio simulations. We performed tensilenand compressive tests along the [0 0 1] direction and compared the results with the deformation behavior of thenfcc matrix and the known intermetallic compounds FePd3 and FePt3. It turned out that the maximum attainablenstress for the Fe−Pd and Fe−Pt nanocomposites is higher than the stress attainable for the Pd and Pt matrices.nThe maximum stress increased with the increasing Fe content. The increase was due to the enhanced stability innthe nanocomposites described by the C11−C12 > 0 condition. This effect was particularly pronounced in thenFe−Pt nanocomposites. On the contrary, the Fe nanowires in the Fe−Cu nanocomposites do not enhance thenstability and strength of the Cu matrix. They even make the Cu matrix more compliant to compression.nRegarding the magnetic ground states, the Fe−Pd and Fe−Pt nanocomposites prefer a ferromagnetic configurationnwhere the spins of all Fe atoms are oriented in parallel manner. On the other hand, the Fe−Cu nanocompositesnexhibit an antiferromagnetic configuration where the spins of all Fe atoms assigned to a particularnnanowire are oriented parallel, but antiparallel to the spins of a neighboring Fe nanowire. The Young modulusnE001 along the [0 0 1] crystallographic direction increases linearly with the Fe content in both the Fe−Pd andnFe−Pt nanocomposites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnetism and Magnetic Materials
ISSN
0304-8853
e-ISSN
—
Svazek periodika
469
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
100-107
Kód UT WoS článku
000447147100017
EID výsledku v databázi Scopus
2-s2.0-85052112511