Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F19%3A00492417" target="_blank" >RIV/68081723:_____/19:00492417 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081731:_____/19:00492417 RIV/00216305:26620/19:PU128713 RIV/00216224:14310/19:00109263

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jmmm.2018.08.027" target="_blank" >http://dx.doi.org/10.1016/j.jmmm.2018.08.027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmmm.2018.08.027" target="_blank" >10.1016/j.jmmm.2018.08.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites

  • Popis výsledku v původním jazyce

    We studied the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites formed by Fe nanowires embedded in the fcc Pd, Ptnor Cu matrix. The Fe atoms form nanowires oriented along the [0 0 1] crystallographic direction. They replacensecond nearest neighbor atoms in the matrix. By means of varying the distance between the nanowires wenarrived to the chemical compositions X15Fe, X8Fe and X7Fe where X stands for Pd, Pt and Cu. The mechanicalnand magnetic properties of the nanocomposites were obtained by ab initio simulations. We performed tensilenand compressive tests along the [0 0 1] direction and compared the results with the deformation behavior of thenfcc matrix and the known intermetallic compounds FePd3 and FePt3. It turned out that the maximum attainablenstress for the Fe−Pd and Fe−Pt nanocomposites is higher than the stress attainable for the Pd and Pt matrices.nThe maximum stress increased with the increasing Fe content. The increase was due to the enhanced stability innthe nanocomposites described by the C11−C12 > 0 condition. This effect was particularly pronounced in thenFe−Pt nanocomposites. On the contrary, the Fe nanowires in the Fe−Cu nanocomposites do not enhance thenstability and strength of the Cu matrix. They even make the Cu matrix more compliant to compression.nRegarding the magnetic ground states, the Fe−Pd and Fe−Pt nanocomposites prefer a ferromagnetic configurationnwhere the spins of all Fe atoms are oriented in parallel manner. On the other hand, the Fe−Cu nanocompositesnexhibit an antiferromagnetic configuration where the spins of all Fe atoms assigned to a particularnnanowire are oriented parallel, but antiparallel to the spins of a neighboring Fe nanowire. The Young modulusnE001 along the [0 0 1] crystallographic direction increases linearly with the Fe content in both the Fe−Pd andnFe−Pt nanocomposites.

  • Název v anglickém jazyce

    Ab initio study of the theoretical strength and magnetism of the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites

  • Popis výsledku anglicky

    We studied the Fe−Pd, Fe−Pt and Fe−Cu nanocomposites formed by Fe nanowires embedded in the fcc Pd, Ptnor Cu matrix. The Fe atoms form nanowires oriented along the [0 0 1] crystallographic direction. They replacensecond nearest neighbor atoms in the matrix. By means of varying the distance between the nanowires wenarrived to the chemical compositions X15Fe, X8Fe and X7Fe where X stands for Pd, Pt and Cu. The mechanicalnand magnetic properties of the nanocomposites were obtained by ab initio simulations. We performed tensilenand compressive tests along the [0 0 1] direction and compared the results with the deformation behavior of thenfcc matrix and the known intermetallic compounds FePd3 and FePt3. It turned out that the maximum attainablenstress for the Fe−Pd and Fe−Pt nanocomposites is higher than the stress attainable for the Pd and Pt matrices.nThe maximum stress increased with the increasing Fe content. The increase was due to the enhanced stability innthe nanocomposites described by the C11−C12 > 0 condition. This effect was particularly pronounced in thenFe−Pt nanocomposites. On the contrary, the Fe nanowires in the Fe−Cu nanocomposites do not enhance thenstability and strength of the Cu matrix. They even make the Cu matrix more compliant to compression.nRegarding the magnetic ground states, the Fe−Pd and Fe−Pt nanocomposites prefer a ferromagnetic configurationnwhere the spins of all Fe atoms are oriented in parallel manner. On the other hand, the Fe−Cu nanocompositesnexhibit an antiferromagnetic configuration where the spins of all Fe atoms assigned to a particularnnanowire are oriented parallel, but antiparallel to the spins of a neighboring Fe nanowire. The Young modulusnE001 along the [0 0 1] crystallographic direction increases linearly with the Fe content in both the Fe−Pd andnFe−Pt nanocomposites.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Magnetism and Magnetic Materials

  • ISSN

    0304-8853

  • e-ISSN

  • Svazek periodika

    469

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    100-107

  • Kód UT WoS článku

    000447147100017

  • EID výsledku v databázi Scopus

    2-s2.0-85052112511