How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00534080" target="_blank" >RIV/68081723:_____/20:00534080 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4352/10/2/134" target="_blank" >https://www.mdpi.com/2073-4352/10/2/134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cryst10020134" target="_blank" >10.3390/cryst10020134</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys
Popis výsledku v původním jazyce
The present work investigates gamma-channel dislocation reactions, which govern low-temperature (T = 750 degrees C) and high-stress (resolved shear stress: 300 MPa) creep of Ni-base single crystal superalloys (SX). It is well known that two dislocation families with different b-vectors are required to form planar faults, which can shear the ordered gamma'-phase. However, so far, no direct mechanical and microstructural evidence has been presented which clearly proves the importance of these reactions. In the mechanical part of the present work, we perform shear creep tests and we compare the deformation behavior of two macroscopic crystallographic shear systems [011 over bar ](111) and [112 over bar ](111). These two shear systems share the same glide plane but differ in loading direction. The [112 over bar ](111) shear system, where the two dislocation families required to form a planar fault ribbon experience the same resolved shear stresses, deforms significantly faster than the [011 over bar ](111) shear system, where only one of the two required dislocation families is strongly promoted. Diffraction contrast transmission electron microscopy (TEM) analysis identifies the dislocation reactions, which rationalize this macroscopic behavior.
Název v anglickém jazyce
How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys
Popis výsledku anglicky
The present work investigates gamma-channel dislocation reactions, which govern low-temperature (T = 750 degrees C) and high-stress (resolved shear stress: 300 MPa) creep of Ni-base single crystal superalloys (SX). It is well known that two dislocation families with different b-vectors are required to form planar faults, which can shear the ordered gamma'-phase. However, so far, no direct mechanical and microstructural evidence has been presented which clearly proves the importance of these reactions. In the mechanical part of the present work, we perform shear creep tests and we compare the deformation behavior of two macroscopic crystallographic shear systems [011 over bar ](111) and [112 over bar ](111). These two shear systems share the same glide plane but differ in loading direction. The [112 over bar ](111) shear system, where the two dislocation families required to form a planar fault ribbon experience the same resolved shear stresses, deforms significantly faster than the [011 over bar ](111) shear system, where only one of the two required dislocation families is strongly promoted. Diffraction contrast transmission electron microscopy (TEM) analysis identifies the dislocation reactions, which rationalize this macroscopic behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystals
ISSN
2073-4352
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
134
Kód UT WoS článku
000519704700002
EID výsledku v databázi Scopus
2-s2.0-85081281283