Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00541010" target="_blank" >RIV/68081723:_____/20:00541010 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00115282
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0264127519306495?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0264127519306495?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2019.108211" target="_blank" >10.1016/j.matdes.2019.108211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study
Popis výsledku v původním jazyce
Superlattice architecture represents an effective strategy to improve performance of hard protective coatings. Our model system, MoN/TaN, combines materials well-known for their high ductility as well as a strong driving force for vacancies. In this work, we reveal and interpret peculiar structure-stability-elasticity relations for MoN/TaN combining modelling and experimental approaches. Chemistry of the most stable structural variants depending on various deposition conditions is predicted by Density Functional Theory calculations using the concept of chemical potential. Importantly, no stability region exists for the defect-free superlattice. The X-ray Diffraction and Energy-dispersive X-ray Spectroscopy experiments show that MoN/TaN superlattices consist of distorted fcc building blocks and contain non-metallic vacancies in MoN layers, which perfectly agrees with our theoretical model for these particular deposition conditions. The vibrational spectra analysis together with the close overlap between the experimental indentation modulus and the calculated Young's modulus points towards MoN0.5/TaN as the most likely chemistry of our coatings. (c) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Název v anglickém jazyce
Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study
Popis výsledku anglicky
Superlattice architecture represents an effective strategy to improve performance of hard protective coatings. Our model system, MoN/TaN, combines materials well-known for their high ductility as well as a strong driving force for vacancies. In this work, we reveal and interpret peculiar structure-stability-elasticity relations for MoN/TaN combining modelling and experimental approaches. Chemistry of the most stable structural variants depending on various deposition conditions is predicted by Density Functional Theory calculations using the concept of chemical potential. Importantly, no stability region exists for the defect-free superlattice. The X-ray Diffraction and Energy-dispersive X-ray Spectroscopy experiments show that MoN/TaN superlattices consist of distorted fcc building blocks and contain non-metallic vacancies in MoN layers, which perfectly agrees with our theoretical model for these particular deposition conditions. The vibrational spectra analysis together with the close overlap between the experimental indentation modulus and the calculated Young's modulus points towards MoN0.5/TaN as the most likely chemistry of our coatings. (c) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials and Design
ISSN
0264-1275
e-ISSN
—
Svazek periodika
186
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
108211
Kód UT WoS článku
000505221700076
EID výsledku v databázi Scopus
2-s2.0-85075562973