Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00541010" target="_blank" >RIV/68081723:_____/20:00541010 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/20:00115282

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0264127519306495?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0264127519306495?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.matdes.2019.108211" target="_blank" >10.1016/j.matdes.2019.108211</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study

  • Popis výsledku v původním jazyce

    Superlattice architecture represents an effective strategy to improve performance of hard protective coatings. Our model system, MoN/TaN, combines materials well-known for their high ductility as well as a strong driving force for vacancies. In this work, we reveal and interpret peculiar structure-stability-elasticity relations for MoN/TaN combining modelling and experimental approaches. Chemistry of the most stable structural variants depending on various deposition conditions is predicted by Density Functional Theory calculations using the concept of chemical potential. Importantly, no stability region exists for the defect-free superlattice. The X-ray Diffraction and Energy-dispersive X-ray Spectroscopy experiments show that MoN/TaN superlattices consist of distorted fcc building blocks and contain non-metallic vacancies in MoN layers, which perfectly agrees with our theoretical model for these particular deposition conditions. The vibrational spectra analysis together with the close overlap between the experimental indentation modulus and the calculated Young's modulus points towards MoN0.5/TaN as the most likely chemistry of our coatings. (c) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  • Název v anglickém jazyce

    Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study

  • Popis výsledku anglicky

    Superlattice architecture represents an effective strategy to improve performance of hard protective coatings. Our model system, MoN/TaN, combines materials well-known for their high ductility as well as a strong driving force for vacancies. In this work, we reveal and interpret peculiar structure-stability-elasticity relations for MoN/TaN combining modelling and experimental approaches. Chemistry of the most stable structural variants depending on various deposition conditions is predicted by Density Functional Theory calculations using the concept of chemical potential. Importantly, no stability region exists for the defect-free superlattice. The X-ray Diffraction and Energy-dispersive X-ray Spectroscopy experiments show that MoN/TaN superlattices consist of distorted fcc building blocks and contain non-metallic vacancies in MoN layers, which perfectly agrees with our theoretical model for these particular deposition conditions. The vibrational spectra analysis together with the close overlap between the experimental indentation modulus and the calculated Young's modulus points towards MoN0.5/TaN as the most likely chemistry of our coatings. (c) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials and Design

  • ISSN

    0264-1275

  • e-ISSN

  • Svazek periodika

    186

  • Číslo periodika v rámci svazku

    JAN

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    108211

  • Kód UT WoS článku

    000505221700076

  • EID výsledku v databázi Scopus

    2-s2.0-85075562973