Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00541321" target="_blank" >RIV/68081723:_____/20:00541321 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26110/20:PU134817
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167844219306500?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844219306500?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2020.102486" target="_blank" >10.1016/j.tafmec.2020.102486</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites
Popis výsledku v původním jazyce
Prediction of quasi-brittle behaviour of structural components from fibre reinforced composites under mechanical loads should incorporate such physical processes as elastic, resp. plastic deformation, crack initiation, crack propagation in a matrix, pull out of fibres and rupture of fibres. The computational model for the practically most important case of cementitious composites containing short intentionally or quasi-randomly oriented steel, ceramic, resp. polymeric fibres with its primary import of suppression of tensile stresses in a matrix will be introduced. Its numerical approach relies on the modified eXtended Finite Element Method, open to the implementation of the cohesive traction separation law. This paper introduces the implementation of some integral-type nonlocal constitutive strain-stress relation. It pays attention namely to the Eringen model for the generation of the multiplicative damage factor, to the related quasi-static analysis, to the existence of a weak solution of the corresponding boundary and initial value problem with a parabolic system of partial differential equation and to the convergence of an algorithm based on 3 types of Rothe sequences. Thus, the article combines the possibilities of the two procedures for modeling crack propagation. Microstructural behavior is contained in the Eringen model, the effect of macro behavior in modified finite element method XFEM.
Název v anglickém jazyce
Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites
Popis výsledku anglicky
Prediction of quasi-brittle behaviour of structural components from fibre reinforced composites under mechanical loads should incorporate such physical processes as elastic, resp. plastic deformation, crack initiation, crack propagation in a matrix, pull out of fibres and rupture of fibres. The computational model for the practically most important case of cementitious composites containing short intentionally or quasi-randomly oriented steel, ceramic, resp. polymeric fibres with its primary import of suppression of tensile stresses in a matrix will be introduced. Its numerical approach relies on the modified eXtended Finite Element Method, open to the implementation of the cohesive traction separation law. This paper introduces the implementation of some integral-type nonlocal constitutive strain-stress relation. It pays attention namely to the Eringen model for the generation of the multiplicative damage factor, to the related quasi-static analysis, to the existence of a weak solution of the corresponding boundary and initial value problem with a parabolic system of partial differential equation and to the convergence of an algorithm based on 3 types of Rothe sequences. Thus, the article combines the possibilities of the two procedures for modeling crack propagation. Microstructural behavior is contained in the Eringen model, the effect of macro behavior in modified finite element method XFEM.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Fracture Mechanics
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
107
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
102486
Kód UT WoS článku
000528008200020
EID výsledku v databázi Scopus
2-s2.0-85078802718