Generalization of classical Hillert's grain growth and LSW theories to a wide family of kinetic evolution equations and stationary distribution functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F22%3A00559247" target="_blank" >RIV/68081723:_____/22:00559247 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1359645422004669?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1359645422004669?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2022.118085" target="_blank" >10.1016/j.actamat.2022.118085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalization of classical Hillert's grain growth and LSW theories to a wide family of kinetic evolution equations and stationary distribution functions
Popis výsledku v původním jazyce
Coarsening of objects as grains or precipitates belongs to the most relevant processes during the heat treatment and high-temperature application of materials. Based on the appropriate models incorporating the relevant phenomena, the coarsening of objects can be described by evolution equations, which are reflected by stationary radius distribution functions. Such a distribution function for a distinct evolution equation has been derived e.g. in the frame of Lifshitz, Slyozov and Wagner (LSW) theory for the precipitate coarsening. The current evolution equations are in prevailing number of cases based on the mean field approach. A two-parametric family of evolution equations is proposed, which includes e.g. the LSW theory as a special case. The specific phenomena controlling the object evolution can be incorporated by using proper values of parameters used in the evolution equation. An effective procedure is presented how the corresponding stationary radius distribution function can be calculated for each evolution equation from the family. The distribution functions are demonstrated for several combinations of admissible parameters. Basic characteristics of their shapes are also evaluated.
Název v anglickém jazyce
Generalization of classical Hillert's grain growth and LSW theories to a wide family of kinetic evolution equations and stationary distribution functions
Popis výsledku anglicky
Coarsening of objects as grains or precipitates belongs to the most relevant processes during the heat treatment and high-temperature application of materials. Based on the appropriate models incorporating the relevant phenomena, the coarsening of objects can be described by evolution equations, which are reflected by stationary radius distribution functions. Such a distribution function for a distinct evolution equation has been derived e.g. in the frame of Lifshitz, Slyozov and Wagner (LSW) theory for the precipitate coarsening. The current evolution equations are in prevailing number of cases based on the mean field approach. A two-parametric family of evolution equations is proposed, which includes e.g. the LSW theory as a special case. The specific phenomena controlling the object evolution can be incorporated by using proper values of parameters used in the evolution equation. An effective procedure is presented how the corresponding stationary radius distribution function can be calculated for each evolution equation from the family. The distribution functions are demonstrated for several combinations of admissible parameters. Basic characteristics of their shapes are also evaluated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX21-02203X" target="_blank" >GX21-02203X: Vylepšení vlastností současných špičkových slitin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
1873-2453
Svazek periodika
ROČ 235
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
118085
Kód UT WoS článku
000814729300001
EID výsledku v databázi Scopus
2-s2.0-85132227686