Nanomaterials by severe plastic deformation: review of historical developments and recent advances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F22%3A00566797" target="_blank" >RIV/68081723:_____/22:00566797 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10455406
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/21663831.2022.2029779" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/21663831.2022.2029779</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/21663831.2022.2029779" target="_blank" >10.1080/21663831.2022.2029779</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanomaterials by severe plastic deformation: review of historical developments and recent advances
Popis výsledku v původním jazyce
IMPACT STATEMENT This article comprehensively reviews recent advances on development of ultrafine-grained and nanostructured materials by severe plastic deformation and provides a brief history regarding the progress of this field.nnSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity.
Název v anglickém jazyce
Nanomaterials by severe plastic deformation: review of historical developments and recent advances
Popis výsledku anglicky
IMPACT STATEMENT This article comprehensively reviews recent advances on development of ultrafine-grained and nanostructured materials by severe plastic deformation and provides a brief history regarding the progress of this field.nnSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Research Letters
ISSN
2166-3831
e-ISSN
2166-3831
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
93
Strana od-do
163-256
Kód UT WoS článku
000757030200001
EID výsledku v databázi Scopus
2-s2.0-85125782163