Numerical modelling of fatigue crack closure and its implication on crack front curvature using CTODp
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00570509" target="_blank" >RIV/68081723:_____/23:00570509 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/23:PU150873
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0142112323000713?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0142112323000713?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijfatigue.2023.107570" target="_blank" >10.1016/j.ijfatigue.2023.107570</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical modelling of fatigue crack closure and its implication on crack front curvature using CTODp
Popis výsledku v původním jazyce
One of the widely used approaches to characterize fatigue crack propagation is the use of the effective stress intensity factor range ΔKeff, which relies on determination of crack closure value Kcl. The used models of crack closure are most frequently-two-dimensional, however, for real cracks, the 3D effects should be taken into account. The paper presents 3D finite element analyses of the influences of crack front shape, inserted cycles (loading cycles between node releases) and crack closure on the crack driving force in terms of ΔKeff and ΔCTODp (plastic part of crack tip opening displacement range). Numerically obtained crack closure depended on the simulation strategy. In the case of inserted cycles, crack closure disappeared in the internal part of the specimen and remained only near the free edges. The use of ΔCTODp had the advantage of a well-defined parameter in situations where ΔKeff was problematic, namely at the corner points, which did not allow finding of equalized crack driving force along the whole crack front using ΔKeff. Equalized crack driving force in terms of ΔCTODp was found for crack front curvature with the edge angle 15.4° in simulation with crack closure, which was in good agreement with the experimentally measured value of 16°. Loops produced by loading and unloading branches of the force vs CTOD diagrams helped to describe the crack closure process and magnitude. Actual values of CTOD did not agree with the classical idea of 2D solutions under plane strain and plane stress. CTOD was larger in the internal part of the specimen than at the free edges, even in simulations with no crack face contact.
Název v anglickém jazyce
Numerical modelling of fatigue crack closure and its implication on crack front curvature using CTODp
Popis výsledku anglicky
One of the widely used approaches to characterize fatigue crack propagation is the use of the effective stress intensity factor range ΔKeff, which relies on determination of crack closure value Kcl. The used models of crack closure are most frequently-two-dimensional, however, for real cracks, the 3D effects should be taken into account. The paper presents 3D finite element analyses of the influences of crack front shape, inserted cycles (loading cycles between node releases) and crack closure on the crack driving force in terms of ΔKeff and ΔCTODp (plastic part of crack tip opening displacement range). Numerically obtained crack closure depended on the simulation strategy. In the case of inserted cycles, crack closure disappeared in the internal part of the specimen and remained only near the free edges. The use of ΔCTODp had the advantage of a well-defined parameter in situations where ΔKeff was problematic, namely at the corner points, which did not allow finding of equalized crack driving force along the whole crack front using ΔKeff. Equalized crack driving force in terms of ΔCTODp was found for crack front curvature with the edge angle 15.4° in simulation with crack closure, which was in good agreement with the experimentally measured value of 16°. Loops produced by loading and unloading branches of the force vs CTOD diagrams helped to describe the crack closure process and magnitude. Actual values of CTOD did not agree with the classical idea of 2D solutions under plane strain and plane stress. CTOD was larger in the internal part of the specimen than at the free edges, even in simulations with no crack face contact.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-28283S" target="_blank" >GA22-28283S: Oxidy indukované zavírání trhliny a jeho dopady na únavovou životnost mechanických komponent (OXILAP)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Fatigue
ISSN
0142-1123
e-ISSN
1879-3452
Svazek periodika
171
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
107570
Kód UT WoS článku
000947983100001
EID výsledku v databázi Scopus
2-s2.0-85148543968