Thermomechanical fatigue of additively manufactured 316L stainless steel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00571964" target="_blank" >RIV/68081723:_____/23:00571964 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921509323002551?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921509323002551?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2023.144831" target="_blank" >10.1016/j.msea.2023.144831</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermomechanical fatigue of additively manufactured 316L stainless steel
Popis výsledku v původním jazyce
An important issue in energy conversion is the performance of materials under complex cyclic loading in a variable temperature field. The present study addresses a new field of research – thermomechanical fatigue of additively manufactured metallic materials, which is crucial for understanding the behaviour of this promising material class under real operating conditions. The material of interest – 316L austenitic stainless steel, commonly used for heat exchangers – was manufactured to bars using laser powder bed fusion. Cylindrical specimens with characteristic hierarchical, non-equilibrium cellular microstructure were machined out of the bars. Two orientations corresponding to the inclination of the building direction to the specimen axis were considered: 0° and 90°. The specimens were subjected to thermomechanical fatigue loading under in-phase (maximum tension coincides with maximum temperature) and out-of-phase (maximum compression coincides with maximum temperature) conditions. The cellular dislocation microstructure showed good stability despite gradual coarsening under the combined effect of thermal loading up to 750 °C and severe plastic deformation. Systematic electron microscopy observations further revealed that basic damage mechanisms – either creep or stress-assisted oxide cracking, the prevalence of which depends on thermomechanical loading conditions – correspond to the behaviour of conventional metallic materials. Under in-phase loading, intergranular creep damage is dominant, hence a key factor affecting the lifetime is the number of grain boundaries in the loading direction. Under out-of-phase loading, fatigue damage is dominant, and the lifetime is determined by transgranular propagation of a principal crack. Comparing the two orientations, the inherent microstructural texture was found to be a crucial factor, also determining the number of grain boundaries and cell walls in the loading direction. Hence, tailoring the microstructure for the service relevant loading conditions via additive manufacturing techniques enables to enhance the component performance in the important field of energy conversion.
Název v anglickém jazyce
Thermomechanical fatigue of additively manufactured 316L stainless steel
Popis výsledku anglicky
An important issue in energy conversion is the performance of materials under complex cyclic loading in a variable temperature field. The present study addresses a new field of research – thermomechanical fatigue of additively manufactured metallic materials, which is crucial for understanding the behaviour of this promising material class under real operating conditions. The material of interest – 316L austenitic stainless steel, commonly used for heat exchangers – was manufactured to bars using laser powder bed fusion. Cylindrical specimens with characteristic hierarchical, non-equilibrium cellular microstructure were machined out of the bars. Two orientations corresponding to the inclination of the building direction to the specimen axis were considered: 0° and 90°. The specimens were subjected to thermomechanical fatigue loading under in-phase (maximum tension coincides with maximum temperature) and out-of-phase (maximum compression coincides with maximum temperature) conditions. The cellular dislocation microstructure showed good stability despite gradual coarsening under the combined effect of thermal loading up to 750 °C and severe plastic deformation. Systematic electron microscopy observations further revealed that basic damage mechanisms – either creep or stress-assisted oxide cracking, the prevalence of which depends on thermomechanical loading conditions – correspond to the behaviour of conventional metallic materials. Under in-phase loading, intergranular creep damage is dominant, hence a key factor affecting the lifetime is the number of grain boundaries in the loading direction. Under out-of-phase loading, fatigue damage is dominant, and the lifetime is determined by transgranular propagation of a principal crack. Comparing the two orientations, the inherent microstructural texture was found to be a crucial factor, also determining the number of grain boundaries and cell walls in the loading direction. Hence, tailoring the microstructure for the service relevant loading conditions via additive manufacturing techniques enables to enhance the component performance in the important field of energy conversion.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0016933" target="_blank" >EF18_053/0016933: Mezinárodní mobilita pracovníků ÚFM</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science and Engineering A Structural Materials Properties Microstructure and Processing
ISSN
0921-5093
e-ISSN
1873-4936
Svazek periodika
869
Číslo periodika v rámci svazku
MARCH
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
144831
Kód UT WoS článku
000991346000001
EID výsledku v databázi Scopus
2-s2.0-85148684933