High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00574218" target="_blank" >RIV/68081723:_____/23:00574218 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/23:10252751 RIV/00216305:26210/23:PU148445
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/16/9/3400" target="_blank" >https://www.mdpi.com/1996-1944/16/9/3400</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma16093400" target="_blank" >10.3390/ma16093400</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging
Popis výsledku v původním jazyce
This paper deals with a study of additively manufactured (by the Selective Laser Melting, SLM, method) and conventionally produced AISI 316L stainless steel and their comparison. With the intention to enhance the performance of the workpieces, each material was post-processed via hot rotary swaging under a temperature of 900 degrees C. The samples of each particular material were analysed regarding porosity, microhardness, high cycle fatigue, and microstructure. The obtained data has shown a significant reduction in the residual porosity and the microhardness increase to 310 HV in the sample after the hot rotary swaging. Based on the acquired data, the sample produced via SLM and post-processed by hot rotary swaging featured higher fatigue resistance compared to conventionally produced samples where the stress was set to 540 MPa. The structure of the printed samples changed from the characteristic melting pools to a structure with a lower average grain size accompanied by a decrease of a high fraction of high-angle grain boundaries and higher geometrically necessary dislocation density. Specifically, the grain size decreased from the average diameters of more than 20 mu m to 3.9 mu m and 4.1 mu m for the SLM and conventionally prepared samples, respectively. In addition, the presented research has brought in the material constants of the Hensel-Spittel formula adapted to predict the hot flow stress evolution of the studied steel with respect to its 3D printed state.
Název v anglickém jazyce
High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging
Popis výsledku anglicky
This paper deals with a study of additively manufactured (by the Selective Laser Melting, SLM, method) and conventionally produced AISI 316L stainless steel and their comparison. With the intention to enhance the performance of the workpieces, each material was post-processed via hot rotary swaging under a temperature of 900 degrees C. The samples of each particular material were analysed regarding porosity, microhardness, high cycle fatigue, and microstructure. The obtained data has shown a significant reduction in the residual porosity and the microhardness increase to 310 HV in the sample after the hot rotary swaging. Based on the acquired data, the sample produced via SLM and post-processed by hot rotary swaging featured higher fatigue resistance compared to conventionally produced samples where the stress was set to 540 MPa. The structure of the printed samples changed from the characteristic melting pools to a structure with a lower average grain size accompanied by a decrease of a high fraction of high-angle grain boundaries and higher geometrically necessary dislocation density. Specifically, the grain size decreased from the average diameters of more than 20 mu m to 3.9 mu m and 4.1 mu m for the SLM and conventionally prepared samples, respectively. In addition, the presented research has brought in the material constants of the Hensel-Spittel formula adapted to predict the hot flow stress evolution of the studied steel with respect to its 3D printed state.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
16
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
3400
Kód UT WoS článku
000987424100001
EID výsledku v databázi Scopus
2-s2.0-85159360561