From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00576450" target="_blank" >RIV/68081723:_____/23:00576450 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0925838823031535?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838823031535?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2023.171850" target="_blank" >10.1016/j.jallcom.2023.171850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles
Popis výsledku v původním jazyce
Mechanical alloying (MA), the state-of-the-art processing step to produce oxide dispersion strengthened materials, shows a deficiency regarding time and costs hindering a broader applicability. Therefore, in order to investigate the effect of cryogenic MA temperatures and to understand the mechanism behind the refinement and dissolution of yttria, face-centered cubic FeCrMnNiCo powders are mechanically alloyed with yttria at room and cryogenic temperatures using a novel cryogenic attritor. Mechanically alloyed powders are thus analyzed using a comprehensive set of experimental methods. Transmission electron microscopy reveals a stronger decrease of the oxide particle size upon cryogenic MA while at both temperatures the hereby observed particles in a size over 10 nm still show yttria crystal structure. Nevertheless, a substantial amount of yttria is refined below 10 nm forming nanoclusters without detectable crystal structure. Positron annihilation spectroscopy suggests a vacancy assisted dissolution of yttria into these nanoclusters while detailed investigation of these nanoclusters by atom probe tomography suggests smaller clusters in the cryoalloyed sample. The results imply that this vacancy assisted dissolution seems to be enhanced at cryogenic temperatures as first principle calculations and a change of the chemical composition of the nanoclusters imply higher vacancy densities at cryogenic MA temperatures stabilizing smaller nanoclusters.
Název v anglickém jazyce
From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles
Popis výsledku anglicky
Mechanical alloying (MA), the state-of-the-art processing step to produce oxide dispersion strengthened materials, shows a deficiency regarding time and costs hindering a broader applicability. Therefore, in order to investigate the effect of cryogenic MA temperatures and to understand the mechanism behind the refinement and dissolution of yttria, face-centered cubic FeCrMnNiCo powders are mechanically alloyed with yttria at room and cryogenic temperatures using a novel cryogenic attritor. Mechanically alloyed powders are thus analyzed using a comprehensive set of experimental methods. Transmission electron microscopy reveals a stronger decrease of the oxide particle size upon cryogenic MA while at both temperatures the hereby observed particles in a size over 10 nm still show yttria crystal structure. Nevertheless, a substantial amount of yttria is refined below 10 nm forming nanoclusters without detectable crystal structure. Positron annihilation spectroscopy suggests a vacancy assisted dissolution of yttria into these nanoclusters while detailed investigation of these nanoclusters by atom probe tomography suggests smaller clusters in the cryoalloyed sample. The results imply that this vacancy assisted dissolution seems to be enhanced at cryogenic temperatures as first principle calculations and a change of the chemical composition of the nanoclusters imply higher vacancy densities at cryogenic MA temperatures stabilizing smaller nanoclusters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Alloys and Compounds
ISSN
0925-8388
e-ISSN
1873-4669
Svazek periodika
968
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
171850
Kód UT WoS článku
001073105500001
EID výsledku v databázi Scopus
2-s2.0-85169800944