Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00576450" target="_blank" >RIV/68081723:_____/23:00576450 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0925838823031535?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838823031535?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2023.171850" target="_blank" >10.1016/j.jallcom.2023.171850</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles

  • Popis výsledku v původním jazyce

    Mechanical alloying (MA), the state-of-the-art processing step to produce oxide dispersion strengthened materials, shows a deficiency regarding time and costs hindering a broader applicability. Therefore, in order to investigate the effect of cryogenic MA temperatures and to understand the mechanism behind the refinement and dissolution of yttria, face-centered cubic FeCrMnNiCo powders are mechanically alloyed with yttria at room and cryogenic temperatures using a novel cryogenic attritor. Mechanically alloyed powders are thus analyzed using a comprehensive set of experimental methods. Transmission electron microscopy reveals a stronger decrease of the oxide particle size upon cryogenic MA while at both temperatures the hereby observed particles in a size over 10 nm still show yttria crystal structure. Nevertheless, a substantial amount of yttria is refined below 10 nm forming nanoclusters without detectable crystal structure. Positron annihilation spectroscopy suggests a vacancy assisted dissolution of yttria into these nanoclusters while detailed investigation of these nanoclusters by atom probe tomography suggests smaller clusters in the cryoalloyed sample. The results imply that this vacancy assisted dissolution seems to be enhanced at cryogenic temperatures as first principle calculations and a change of the chemical composition of the nanoclusters imply higher vacancy densities at cryogenic MA temperatures stabilizing smaller nanoclusters.

  • Název v anglickém jazyce

    From microscopic to atomistic scale: Temperature effect on yttria distribution in mechanically alloyed FeCrMnNiCo powder particles

  • Popis výsledku anglicky

    Mechanical alloying (MA), the state-of-the-art processing step to produce oxide dispersion strengthened materials, shows a deficiency regarding time and costs hindering a broader applicability. Therefore, in order to investigate the effect of cryogenic MA temperatures and to understand the mechanism behind the refinement and dissolution of yttria, face-centered cubic FeCrMnNiCo powders are mechanically alloyed with yttria at room and cryogenic temperatures using a novel cryogenic attritor. Mechanically alloyed powders are thus analyzed using a comprehensive set of experimental methods. Transmission electron microscopy reveals a stronger decrease of the oxide particle size upon cryogenic MA while at both temperatures the hereby observed particles in a size over 10 nm still show yttria crystal structure. Nevertheless, a substantial amount of yttria is refined below 10 nm forming nanoclusters without detectable crystal structure. Positron annihilation spectroscopy suggests a vacancy assisted dissolution of yttria into these nanoclusters while detailed investigation of these nanoclusters by atom probe tomography suggests smaller clusters in the cryoalloyed sample. The results imply that this vacancy assisted dissolution seems to be enhanced at cryogenic temperatures as first principle calculations and a change of the chemical composition of the nanoclusters imply higher vacancy densities at cryogenic MA temperatures stabilizing smaller nanoclusters.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

    1873-4669

  • Svazek periodika

    968

  • Číslo periodika v rámci svazku

    DEC

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

    171850

  • Kód UT WoS článku

    001073105500001

  • EID výsledku v databázi Scopus

    2-s2.0-85169800944