Numerical treatment of reactive diffusion using the discontinuous Galerkin method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00577269" target="_blank" >RIV/68081723:_____/24:00577269 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00161-023-01258-0" target="_blank" >https://link.springer.com/article/10.1007/s00161-023-01258-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00161-023-01258-0" target="_blank" >10.1007/s00161-023-01258-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical treatment of reactive diffusion using the discontinuous Galerkin method
Popis výsledku v původním jazyce
This work presents a new finite element variational formulation for the numerical treatment of diffusional phase transformations using the discontinuous Galerkin method (DGM). Steep concentration and property gradients near phase boundaries require particular focus on a sound numerical treatment. There are different ways to tackle this problem ranging from (i) the well-known phase field method (PFM) (Biner et al. in Programming phase-field modeling, Springer, Berlin, 2017, Emmerich in The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models, Springer, Berlin, 2003), where the interface is described continuously to (ii) methods that allow sharp transitions at phase boundaries, such as reactive diffusion models (Svoboda and Fischer in Comput Mater Sci 127:136-140, 2017, 78:39-46, 2013, Svoboda et al. in Comput Mater Sci 95:309-315, 2014). Phase transformation problems with continuous property changes can be implemented using the continuous Galerkin method (GM). Sharp interface models, however, lead to stability problems with the GM. A method that is able to treat the features of sharp interface models is the discontinuous Galerkin method. This method is well understood for regular diffusion problems (Cockburn in ZAMM J Appl Math Mech 83(11):731-754, 2003). As will be shown, it is also particularly well suited to model phase transformations. We discuss the thermodynamic background by review of a multi-phase, binary system. A new DGM formulation for the phase transformation problem with sharp interfaces is then introduced. Finally, the derived method is used in a 2D microstructural evolution simulation that features a binary, three-phase system that also takes the vacancy mechanism of solid body diffusion into account.
Název v anglickém jazyce
Numerical treatment of reactive diffusion using the discontinuous Galerkin method
Popis výsledku anglicky
This work presents a new finite element variational formulation for the numerical treatment of diffusional phase transformations using the discontinuous Galerkin method (DGM). Steep concentration and property gradients near phase boundaries require particular focus on a sound numerical treatment. There are different ways to tackle this problem ranging from (i) the well-known phase field method (PFM) (Biner et al. in Programming phase-field modeling, Springer, Berlin, 2017, Emmerich in The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models, Springer, Berlin, 2003), where the interface is described continuously to (ii) methods that allow sharp transitions at phase boundaries, such as reactive diffusion models (Svoboda and Fischer in Comput Mater Sci 127:136-140, 2017, 78:39-46, 2013, Svoboda et al. in Comput Mater Sci 95:309-315, 2014). Phase transformation problems with continuous property changes can be implemented using the continuous Galerkin method (GM). Sharp interface models, however, lead to stability problems with the GM. A method that is able to treat the features of sharp interface models is the discontinuous Galerkin method. This method is well understood for regular diffusion problems (Cockburn in ZAMM J Appl Math Mech 83(11):731-754, 2003). As will be shown, it is also particularly well suited to model phase transformations. We discuss the thermodynamic background by review of a multi-phase, binary system. A new DGM formulation for the phase transformation problem with sharp interfaces is then introduced. Finally, the derived method is used in a 2D microstructural evolution simulation that features a binary, three-phase system that also takes the vacancy mechanism of solid body diffusion into account.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Continuum Mechanics and Thermodynamics
ISSN
0935-1175
e-ISSN
1432-0959
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
61-74
Kód UT WoS článku
001081179600001
EID výsledku v databázi Scopus
2-s2.0-85174071480