Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Constitution, physical properties and thermodynamic modeling of the Hf-Mn system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00579738" target="_blank" >RIV/68081723:_____/24:00579738 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/24:00135480

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0925838823043633?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838823043633?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2023.173060" target="_blank" >10.1016/j.jallcom.2023.173060</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Constitution, physical properties and thermodynamic modeling of the Hf-Mn system

  • Popis výsledku v původním jazyce

    The Hf-Mn system is of a long-time interest due to the intermetallic Laves phase HfMn2, a hydrogen storage material. Although this system has been experimentally investigated by several authors and critical reviews and thermodynamic modelling have been performed, there is still a lack of reliable information, particularly as the phase HfMn (sometimes labelled as Hf3Mn2 or Hf2Mn) is suspected to be oxygen stabilized. This work includes a thorough investigation of the Hf-Mn phase equilibria employing diffusion zones, thermal analysis, powder and single crystal X-ray analyses, analytical electron microscopy as well as physical property studies of the Laves phase (magnetic susceptibility, specific heat, electrical resistivity and mechanical properties). The phase near HfMn was shown (TEM, WDX electron microprobe data, X-ray single crystal analysis) to be an oxygen stabilized phase with the formula Hf3+xMn3−xO1−y (defect η-W3Fe3C type). Properties such as magnetic susceptibility/magnetization, 2–300 K, specific heat (2–1100 K), electrical resistivity (2–300 K) classify HfMn2 as a metallic spin-fluctuation system with itinerant paramagnetism, originating from 3d states at Mn-sites and local moment paramagnetism of antisite Mn-atoms at Hf-sites. Mechanical properties (elastic moduli from density functional theory (DFT) and nanoindentation as well as hardness) group the Laves phase among rather hard and brittle intermetallics. DFT modeling revealed that Hf3+xMn3−x is thermodynamically unstable, but significant gains in enthalpy of formation arise from the inclusion of oxygen atoms, stabilizing the η phase. All phase diagram and DFT data together with the former literature information were used for the thermodynamic CALPHAD-type modelling of the Hf-Mn system.

  • Název v anglickém jazyce

    Constitution, physical properties and thermodynamic modeling of the Hf-Mn system

  • Popis výsledku anglicky

    The Hf-Mn system is of a long-time interest due to the intermetallic Laves phase HfMn2, a hydrogen storage material. Although this system has been experimentally investigated by several authors and critical reviews and thermodynamic modelling have been performed, there is still a lack of reliable information, particularly as the phase HfMn (sometimes labelled as Hf3Mn2 or Hf2Mn) is suspected to be oxygen stabilized. This work includes a thorough investigation of the Hf-Mn phase equilibria employing diffusion zones, thermal analysis, powder and single crystal X-ray analyses, analytical electron microscopy as well as physical property studies of the Laves phase (magnetic susceptibility, specific heat, electrical resistivity and mechanical properties). The phase near HfMn was shown (TEM, WDX electron microprobe data, X-ray single crystal analysis) to be an oxygen stabilized phase with the formula Hf3+xMn3−xO1−y (defect η-W3Fe3C type). Properties such as magnetic susceptibility/magnetization, 2–300 K, specific heat (2–1100 K), electrical resistivity (2–300 K) classify HfMn2 as a metallic spin-fluctuation system with itinerant paramagnetism, originating from 3d states at Mn-sites and local moment paramagnetism of antisite Mn-atoms at Hf-sites. Mechanical properties (elastic moduli from density functional theory (DFT) and nanoindentation as well as hardness) group the Laves phase among rather hard and brittle intermetallics. DFT modeling revealed that Hf3+xMn3−x is thermodynamically unstable, but significant gains in enthalpy of formation arise from the inclusion of oxygen atoms, stabilizing the η phase. All phase diagram and DFT data together with the former literature information were used for the thermodynamic CALPHAD-type modelling of the Hf-Mn system.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8J21AT015" target="_blank" >8J21AT015: Intenzivní plastická deformace - cesta k termoelektrickým materiálům s vysokou konverzní účinností</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

    1873-4669

  • Svazek periodika

    976

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    173060

  • Kód UT WoS článku

    001142152500001

  • EID výsledku v databázi Scopus

    2-s2.0-85180539462