The High Temperature Strength of Single Crystal Ni-base Superalloys Re-visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00586601" target="_blank" >RIV/68081723:_____/24:00586601 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adem.202400368" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adem.202400368</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adem.202400368" target="_blank" >10.1002/adem.202400368</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The High Temperature Strength of Single Crystal Ni-base Superalloys Re-visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testing
Popis výsledku v původním jazyce
The present work takes a new look at the high temperature strength of single crystal (SX) Ni-base superalloys. It compares high temperature constant strain rate (CSR) testing, creep testing, and out-of-phase thermomechanical fatigue (OP TMF) testing, which represent key characterization methods supporting alloy development and component design in SX material science and technology. The three types of tests are compared using the same SX alloy, working with precisely oriented <001>-specimens and considering the same temperature range between 1023 and 1223 K, where climb controlled micro-creep processes need to be considered. Nevertheless, the three types of tests provide different types of information. CSR testing at imposed strain rates of 3.3 x 10(-4) s(-1) shows a yield stress anomaly (YSA) with a YSA stress peak at a temperature of 1073 K. This increase of strength with increasing temperature is not observed during constant load creep testing at much lower deformation rates around 10(-7) s(-1). Creep rates show a usual behavior and increase with increasing temperatures. During OP-TMF loading, the temperature continuously increases/decreases in the compression/tension part of the mechanical strain-controlled cycle (+/- 0.5%). At the temperature, where the YSA peak stress temperature is observed, no peculiarities are observed. It is shown that OP-TMF life is sensitive to surface quality, which is not the case in creep. A smaller number of cycles to failure is observed when reducing the heating rate in the compression/heating part of the mechanical strain-controlled OP-TMF cycle. The results are discussed on a microstructural basis, using results from scanning and transmission electron microscopy, and in light of previous work published in the literature.
Název v anglickém jazyce
The High Temperature Strength of Single Crystal Ni-base Superalloys Re-visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testing
Popis výsledku anglicky
The present work takes a new look at the high temperature strength of single crystal (SX) Ni-base superalloys. It compares high temperature constant strain rate (CSR) testing, creep testing, and out-of-phase thermomechanical fatigue (OP TMF) testing, which represent key characterization methods supporting alloy development and component design in SX material science and technology. The three types of tests are compared using the same SX alloy, working with precisely oriented <001>-specimens and considering the same temperature range between 1023 and 1223 K, where climb controlled micro-creep processes need to be considered. Nevertheless, the three types of tests provide different types of information. CSR testing at imposed strain rates of 3.3 x 10(-4) s(-1) shows a yield stress anomaly (YSA) with a YSA stress peak at a temperature of 1073 K. This increase of strength with increasing temperature is not observed during constant load creep testing at much lower deformation rates around 10(-7) s(-1). Creep rates show a usual behavior and increase with increasing temperatures. During OP-TMF loading, the temperature continuously increases/decreases in the compression/tension part of the mechanical strain-controlled cycle (+/- 0.5%). At the temperature, where the YSA peak stress temperature is observed, no peculiarities are observed. It is shown that OP-TMF life is sensitive to surface quality, which is not the case in creep. A smaller number of cycles to failure is observed when reducing the heating rate in the compression/heating part of the mechanical strain-controlled OP-TMF cycle. The results are discussed on a microstructural basis, using results from scanning and transmission electron microscopy, and in light of previous work published in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11321S" target="_blank" >GA20-11321S: Vliv mikrostruktury a povrchových úprav na absorpci vodíku v bio-kompatibilních slitinách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Engineering Materials
ISSN
1438-1656
e-ISSN
1527-2648
Svazek periodika
26
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
2400368
Kód UT WoS článku
001233471100001
EID výsledku v databázi Scopus
2-s2.0-85194570324