On the coupling of Hamilton's principle and thermodynamic extremal principles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00586776" target="_blank" >RIV/68081723:_____/24:00586776 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022509624000991?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022509624000991?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmps.2024.105633" target="_blank" >10.1016/j.jmps.2024.105633</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the coupling of Hamilton's principle and thermodynamic extremal principles
Popis výsledku v původním jazyce
Extremal principles can generally be divided into two rather distinct classes. There are, on the one hand side, formulations based on the Lagrangian or Hamiltonian mechanics, respectively, dealing with time dependent problems, but essentially resting on conservation of energy and thus being not applicable to dissipative systems in a consistent way. On the other hand, there are formulations based essentially on maximizing the dissipation, working efficiently for the description of dissipative systems, but being not suitable for including inertia effects. Many attempts can be found in the literature to overcome this split into incompatible principles. However, essentially all of them possess an unnatural appearance. In this work, we suggest a solution to this dilemma resting on an additional assumption based on the thermodynamic driving forces involved. Applications to a simple dissipative structure and a material with varying mass demonstrate the capability of the proposed approach.
Název v anglickém jazyce
On the coupling of Hamilton's principle and thermodynamic extremal principles
Popis výsledku anglicky
Extremal principles can generally be divided into two rather distinct classes. There are, on the one hand side, formulations based on the Lagrangian or Hamiltonian mechanics, respectively, dealing with time dependent problems, but essentially resting on conservation of energy and thus being not applicable to dissipative systems in a consistent way. On the other hand, there are formulations based essentially on maximizing the dissipation, working efficiently for the description of dissipative systems, but being not suitable for including inertia effects. Many attempts can be found in the literature to overcome this split into incompatible principles. However, essentially all of them possess an unnatural appearance. In this work, we suggest a solution to this dilemma resting on an additional assumption based on the thermodynamic driving forces involved. Applications to a simple dissipative structure and a material with varying mass demonstrate the capability of the proposed approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Mechanics and Physics of Solids
ISSN
0022-5096
e-ISSN
1873-4782
Svazek periodika
187
Číslo periodika v rámci svazku
Jun
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
105633
Kód UT WoS článku
001237187300001
EID výsledku v databázi Scopus
2-s2.0-85189862347