Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Understanding the high-temperature deformation behavior of additively manufactured γ’-forming Ni-based alloys by microstructure heterogeneities-integrated creep modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00587241" target="_blank" >RIV/68081723:_____/24:00587241 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2214860424003026?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214860424003026?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.addma.2024.104256" target="_blank" >10.1016/j.addma.2024.104256</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Understanding the high-temperature deformation behavior of additively manufactured γ’-forming Ni-based alloys by microstructure heterogeneities-integrated creep modelling

  • Popis výsledku v původním jazyce

    Additively manufactured (AM) alloys present unique and heterogeneous microstructures due to the complex, highly dynamic laser-material interactions. These AM-inherent heterogeneities impede the widespread adoption of AM components, necessitating a profound comprehension of their impact on mechanical properties. Despite extensive research on AM of Ni-based alloys, limited attention has been paid to their creep behavior due to the time-intensive nature of creep tests and the long research cycles. Moreover, experiments and conventional alloy-centric approaches to creep modelling are deemed insufficient in quantifying the effects of AM-specific heterogeneities on creep cavity acceleration and in incorporating the microstructural evolution during creep. To address this critical knowledge gap, a novel computational framework was developed within the structure-property paradigm to unravel the intricate mechanisms governing creep properties. A mechanistic creep model was formulated based on fundamental dislocation creep mechanisms, encompassing dislocation climb-glide motion controlled by γ' precipitates, grain-boundary-sliding (GBS) resistance resulting from M23C6 carbides, and the kinetics of cavity formation. The framework integrates the in situ nucleation, precipitation, and coarsening of γ' precipitates during creep by a precipitation model. The results revealed an excellent agreement in terms of γ' precipitate evolution, creep strain, and strain-rate evolution, the predicted creep life, and times to 1 % strain. By elucidating the intricate interplay between microstructural heterogeneities and creep behavior on the cavity nucleation and GBS mechanisms, the developed computational framework provided valuable insights for enhancing the performance of Ni-based alloys manufactured through AM.

  • Název v anglickém jazyce

    Understanding the high-temperature deformation behavior of additively manufactured γ’-forming Ni-based alloys by microstructure heterogeneities-integrated creep modelling

  • Popis výsledku anglicky

    Additively manufactured (AM) alloys present unique and heterogeneous microstructures due to the complex, highly dynamic laser-material interactions. These AM-inherent heterogeneities impede the widespread adoption of AM components, necessitating a profound comprehension of their impact on mechanical properties. Despite extensive research on AM of Ni-based alloys, limited attention has been paid to their creep behavior due to the time-intensive nature of creep tests and the long research cycles. Moreover, experiments and conventional alloy-centric approaches to creep modelling are deemed insufficient in quantifying the effects of AM-specific heterogeneities on creep cavity acceleration and in incorporating the microstructural evolution during creep. To address this critical knowledge gap, a novel computational framework was developed within the structure-property paradigm to unravel the intricate mechanisms governing creep properties. A mechanistic creep model was formulated based on fundamental dislocation creep mechanisms, encompassing dislocation climb-glide motion controlled by γ' precipitates, grain-boundary-sliding (GBS) resistance resulting from M23C6 carbides, and the kinetics of cavity formation. The framework integrates the in situ nucleation, precipitation, and coarsening of γ' precipitates during creep by a precipitation model. The results revealed an excellent agreement in terms of γ' precipitate evolution, creep strain, and strain-rate evolution, the predicted creep life, and times to 1 % strain. By elucidating the intricate interplay between microstructural heterogeneities and creep behavior on the cavity nucleation and GBS mechanisms, the developed computational framework provided valuable insights for enhancing the performance of Ni-based alloys manufactured through AM.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Additive Manufacturing

  • ISSN

    2214-8604

  • e-ISSN

    2214-7810

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    104256

  • Kód UT WoS článku

    001259676100001

  • EID výsledku v databázi Scopus

    2-s2.0-85196420515