Microstructure evolution and twinning-induced plasticity (TWIP) in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to tensile deformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00587863" target="_blank" >RIV/68081723:_____/24:00587863 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/jap/article/136/2/025101/3302444/Microstructure-evolution-and-twinning-induced" target="_blank" >https://pubs.aip.org/aip/jap/article/136/2/025101/3302444/Microstructure-evolution-and-twinning-induced</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0207181" target="_blank" >10.1063/5.0207181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructure evolution and twinning-induced plasticity (TWIP) in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to tensile deformation
Popis výsledku v původním jazyce
The microstructure evolution due to the tensile deformation of the equiatomic quinary high-entropy alloy Ho-Dy-Y-Gd-Tb (HEA-Fb) is assessed. HEA-Fb has extraordinarily similar alloying elements. It is one of the few hexagonal-close-packed single-phase representatives of HEA. HEA-Fb is compared to the equiatomic quaternary medium-entropy alloy (MEA) Ho-Dy-Gd-Tb with no Y (4-Y). For a hexagonal HEA, in contrast to the cubic HEA, little information on plastic deformation and underlying mechanisms is available. A detailed study using electron microscopy-based multi-scale characterization (SEM, S/TEM, and STEM-EDS) explains significant differences between the ductile behavior of the quaternary MEA 4-Y and the brittle behavior of the quinary HEA-Fb at room temperature. Twinning during plastic deformation is decisive for ductility, which challenges the widely discussed high-entropy effect on the mechanical behavior of the HEA. For the quaternary MEA 4-Y, a twinning-induced plasticity effect is found. In the latter, oxidized twins are present in the undeformed state. In both alloys, the twin orientations are indexed as [2<overline>201], while the matrices have the perpendicular [112<overline>0] orientation. Additionally, the analysis of twin structures confirms the importance of twin boundaries as obstacles for dislocations and stacking fault mobilities. The results are discussed in the context of the existing knowledge gaps in the field of hexagonal MEAs and HEAs.
Název v anglickém jazyce
Microstructure evolution and twinning-induced plasticity (TWIP) in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to tensile deformation
Popis výsledku anglicky
The microstructure evolution due to the tensile deformation of the equiatomic quinary high-entropy alloy Ho-Dy-Y-Gd-Tb (HEA-Fb) is assessed. HEA-Fb has extraordinarily similar alloying elements. It is one of the few hexagonal-close-packed single-phase representatives of HEA. HEA-Fb is compared to the equiatomic quaternary medium-entropy alloy (MEA) Ho-Dy-Gd-Tb with no Y (4-Y). For a hexagonal HEA, in contrast to the cubic HEA, little information on plastic deformation and underlying mechanisms is available. A detailed study using electron microscopy-based multi-scale characterization (SEM, S/TEM, and STEM-EDS) explains significant differences between the ductile behavior of the quaternary MEA 4-Y and the brittle behavior of the quinary HEA-Fb at room temperature. Twinning during plastic deformation is decisive for ductility, which challenges the widely discussed high-entropy effect on the mechanical behavior of the HEA. For the quaternary MEA 4-Y, a twinning-induced plasticity effect is found. In the latter, oxidized twins are present in the undeformed state. In both alloys, the twin orientations are indexed as [2<overline>201], while the matrices have the perpendicular [112<overline>0] orientation. Additionally, the analysis of twin structures confirms the importance of twin boundaries as obstacles for dislocations and stacking fault mobilities. The results are discussed in the context of the existing knowledge gaps in the field of hexagonal MEAs and HEAs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
136
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
025101
Kód UT WoS článku
001268333700002
EID výsledku v databázi Scopus
2-s2.0-85197816338