SignalPlant: an open signal processing software platform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F16%3A00464043" target="_blank" >RIV/68081731:_____/16:00464043 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/16:PU120326
Výsledek na webu
<a href="http://dx.doi.org/10.1088/0967-3334/37/7/N38" target="_blank" >http://dx.doi.org/10.1088/0967-3334/37/7/N38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0967-3334/37/7/N38" target="_blank" >10.1088/0967-3334/37/7/N38</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SignalPlant: an open signal processing software platform
Popis výsledku v původním jazyce
The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant—a standalone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75 106 samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by thirdparties ensuring its adaptability to future research tasks and new data formats.
Název v anglickém jazyce
SignalPlant: an open signal processing software platform
Popis výsledku anglicky
The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant—a standalone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75 106 samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by thirdparties ensuring its adaptability to future research tasks and new data formats.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FS - Lékařská zařízení, přístroje a vybavení
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physiological Measurement
ISSN
0967-3334
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"N38"-"N48"
Kód UT WoS článku
000380814700001
EID výsledku v databázi Scopus
2-s2.0-84979992257