Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F16%3A00464939" target="_blank" >RIV/68081731:_____/16:00464939 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26310/16:PU117704
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00253-015-7162-4" target="_blank" >http://dx.doi.org/10.1007/s00253-015-7162-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00253-015-7162-4" target="_blank" >10.1007/s00253-015-7162-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells
Popis výsledku v původním jazyce
Poly(3-hydroxybutyrate) (PHB) is a common carbon-and energy-storage compound simultaneously produced and degraded into its monomer 3-hydroxybutyrate (3HB) by numerous bacteria and Archae in a metabolic pathway called the PHB cycle. We investigated 3HB as a chemical chaperone capable of protecting model enzymes, namely lipase and lysozyme, from adverse effects of high temperature and oxidation. Heat-mediated denaturation of lipase in the presence or absence of 3HB was monitored by dynamic light scattering (DLS) revealing a significant protective effect of 3HB which increased as its concentration rose. Furthermore, when compared at the same molar concentration, 3HB showed a greater protective effect than the well-known chemical chaperones trehalose and hydroxyectoine. The higher protective effect of 3HB was also confirmed when employing differential scanning calorimetry (DSC) and lysozyme as a model enzyme. Furthermore, 3HB was capable of protecting lipase not only against thermal-mediated denaturation but also against oxidative damage by Cu2+ and H2O2; its protection was higher than that of trehalose and comparable to that of hydroxyectoine. Taking into account that the PHB-producing strain Cupriavidus necator H16 reveals a 16.5-fold higher intracellular concentration than the PHB non-producing mutant C. necator PHB-4, it might be expected that the functional PHB cycle might be responsible for maintaining a higher intracellular level of 3HB which, aside from other positive aspects of functional PHB metabolism, enhances stress resistance of bacterial strains capable of simultaneous PHB synthesis and mobilization. In addition, 3HB can be used in various applications and formulations as an efficient enzyme-stabilizing and enzyme-protecting additive.
Název v anglickém jazyce
Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells
Popis výsledku anglicky
Poly(3-hydroxybutyrate) (PHB) is a common carbon-and energy-storage compound simultaneously produced and degraded into its monomer 3-hydroxybutyrate (3HB) by numerous bacteria and Archae in a metabolic pathway called the PHB cycle. We investigated 3HB as a chemical chaperone capable of protecting model enzymes, namely lipase and lysozyme, from adverse effects of high temperature and oxidation. Heat-mediated denaturation of lipase in the presence or absence of 3HB was monitored by dynamic light scattering (DLS) revealing a significant protective effect of 3HB which increased as its concentration rose. Furthermore, when compared at the same molar concentration, 3HB showed a greater protective effect than the well-known chemical chaperones trehalose and hydroxyectoine. The higher protective effect of 3HB was also confirmed when employing differential scanning calorimetry (DSC) and lysozyme as a model enzyme. Furthermore, 3HB was capable of protecting lipase not only against thermal-mediated denaturation but also against oxidative damage by Cu2+ and H2O2; its protection was higher than that of trehalose and comparable to that of hydroxyectoine. Taking into account that the PHB-producing strain Cupriavidus necator H16 reveals a 16.5-fold higher intracellular concentration than the PHB non-producing mutant C. necator PHB-4, it might be expected that the functional PHB cycle might be responsible for maintaining a higher intracellular level of 3HB which, aside from other positive aspects of functional PHB metabolism, enhances stress resistance of bacterial strains capable of simultaneous PHB synthesis and mobilization. In addition, 3HB can be used in various applications and formulations as an efficient enzyme-stabilizing and enzyme-protecting additive.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Microbiology and Biotechnology
ISSN
0175-7598
e-ISSN
—
Svazek periodika
100
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1365-1376
Kód UT WoS článku
000369308900027
EID výsledku v databázi Scopus
2-s2.0-84955212772