Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F16%3A00507004" target="_blank" >RIV/68081731:_____/16:00507004 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42016-5_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >10.1007/978-3-319-42016-5_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

  • Popis výsledku v původním jazyce

    Most medical images feature a high similarity in the intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with - and even exploiting - this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the ´local structure predictiol´of local label patches. In the present study we test this local structure prediction approach for 3D segmentation tasks, systematically evaluating different parameters that are relevant for the dense annotation of anatomical structures. We choose convolutional neural network as learning algorithm, as it is known to be suited for dealing with correlation between features. We evaluate our approach on the public BRATS2014 data set with three multimodal segmentation tasks, being able to obtain state-of-the-art results for this brain tumor segmentation data set consisting of 254 multimodal volumes with computing time of only 13s per volume

  • Název v anglickém jazyce

    Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

  • Popis výsledku anglicky

    Most medical images feature a high similarity in the intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with - and even exploiting - this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the ´local structure predictiol´of local label patches. In the present study we test this local structure prediction approach for 3D segmentation tasks, systematically evaluating different parameters that are relevant for the dense annotation of anatomical structures. We choose convolutional neural network as learning algorithm, as it is known to be suited for dealing with correlation between features. We evaluate our approach on the public BRATS2014 data set with three multimodal segmentation tasks, being able to obtain state-of-the-art results for this brain tumor segmentation data set consisting of 254 multimodal volumes with computing time of only 13s per volume

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30210 - Clinical neurology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science

  • ISBN

    978-3-319-42015-8

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    59-71

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Munich

  • Datum konání akce

    9. 10. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000389404000006