Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00477761" target="_blank" >RIV/68081731:_____/17:00477761 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/cryst7080246" target="_blank" >http://dx.doi.org/10.3390/cryst7080246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cryst7080246" target="_blank" >10.3390/cryst7080246</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices
Popis výsledku v původním jazyce
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations in the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.
Název v anglickém jazyce
Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices
Popis výsledku anglicky
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations in the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1212" target="_blank" >LO1212: ALISI - Centrum pokročilých diagnostických metod a technologií</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystals
ISSN
2073-4352
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000408374200018
EID výsledku v databázi Scopus
2-s2.0-85027195406