Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F18%3A00489532" target="_blank" >RIV/68081731:_____/18:00489532 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/17:PU125772 RIV/00216224:14110/18:00102429
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.sab.2017.11.004" target="_blank" >http://dx.doi.org/10.1016/j.sab.2017.11.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sab.2017.11.004" target="_blank" >10.1016/j.sab.2017.11.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
Popis výsledku v původním jazyce
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared.
Název v anglickém jazyce
Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
Popis výsledku anglicky
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spectrochimica Acta Part B: Atomic Spectroscopy
ISSN
0584-8547
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
6-12
Kód UT WoS článku
000423897000002
EID výsledku v databázi Scopus
2-s2.0-85033551008