Automated Sleep Arousal Detection Based on EEG Envelograms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F18%3A00509015" target="_blank" >RIV/68081731:_____/18:00509015 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.22489/CinC.2018.040" target="_blank" >http://dx.doi.org/10.22489/CinC.2018.040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2018.040" target="_blank" >10.22489/CinC.2018.040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Sleep Arousal Detection Based on EEG Envelograms
Popis výsledku v původním jazyce
Background: Sleep arousal is basically described as a shift in EEG activity in frequencies > 16 Hz for a duration of > 3 sec (by the American Sleep Disorders Association - ASDA). The number of these arousals during sleep is a reflection of sleep quality. In accordance with the PhysioNet/CinC Challenge 2018, we present a method for automatic detection of arousals in polysomnographic recordings. nnMethod: Each file in the training dataset (N=994) has defined ´Target Arousal Regions´ (TAR, median length 33 seconds), however, arousals were usually located in the right half of these TARs. We built a method detecting EEG frequency shift to locate arousals inside ARs: envelograms (14-20, 16-25 and 20-40 Hz) were inspected in a 3-sec floating window for an increase against a 10-sec background. We then extracted 133,573 blocks with such a shift from TARs (N=38,628) as well as outside TARs (N=94,945). We extracted 23 features from these blocks (how many EEG channels/frequency bands EEG frequency shift, heart rate before/during arousal, airflow and EMG changes) and trained a bagged tree ensemble model (70/30 % hold-out). nnResults: The method showed AUPRC 0.27 on a training set and AUPRC 0.20 on a testing set (N=989).
Název v anglickém jazyce
Automated Sleep Arousal Detection Based on EEG Envelograms
Popis výsledku anglicky
Background: Sleep arousal is basically described as a shift in EEG activity in frequencies > 16 Hz for a duration of > 3 sec (by the American Sleep Disorders Association - ASDA). The number of these arousals during sleep is a reflection of sleep quality. In accordance with the PhysioNet/CinC Challenge 2018, we present a method for automatic detection of arousals in polysomnographic recordings. nnMethod: Each file in the training dataset (N=994) has defined ´Target Arousal Regions´ (TAR, median length 33 seconds), however, arousals were usually located in the right half of these TARs. We built a method detecting EEG frequency shift to locate arousals inside ARs: envelograms (14-20, 16-25 and 20-40 Hz) were inspected in a 3-sec floating window for an increase against a 10-sec background. We then extracted 133,573 blocks with such a shift from TARs (N=38,628) as well as outside TARs (N=94,945). We extracted 23 features from these blocks (how many EEG channels/frequency bands EEG frequency shift, heart rate before/during arousal, airflow and EMG changes) and trained a bagged tree ensemble model (70/30 % hold-out). nnResults: The method showed AUPRC 0.27 on a training set and AUPRC 0.20 on a testing set (N=989).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1212" target="_blank" >LO1212: ALISI - Centrum pokročilých diagnostických metod a technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2018
ISBN
—
ISSN
2325-887X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
8744043
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Maastricht
Datum konání akce
23. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000482598700258