Transport properties of optical fibres with high numerical apertures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F20%3A00535619" target="_blank" >RIV/68081731:_____/20:00535619 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transport properties of optical fibres with high numerical apertures
Popis výsledku v původním jazyce
We theoretically examine the transport properties of non-ideal optical fibres with high numerical aperture. Using a simple spectral method, we derive the modes in perturbed or non-ideal fibres from the numerically evaluated modes of circularly symmetric fibres. We then consider the propagation through the fibre of Gaussian spots, projected onto the distal fibre end. The incident spots are of uniform, arbitrary polarization and positioned at any point on the fibre facet. We then evaluate the effect of propagation through the fibre in terms of various indices. In particular, we consider the motion of the centre of energy, the average polarization state and the average spin and orbital angular momentum. The study includes both step index and graded index optical fibres with symmetric and chiral deformations. We observe a fundamental difference between propagation in step index and graded index optical fibres: in the latter case, the centre of energy converges to the fibre axis as the light propagated along the fibre and in the former it moves erratically about the transverse plane. In addition, we find that circular polarization states are preserved for cylindrically symmetric fibres, of arbitrarily high numerical aperture. However, this property is destroyed by relatively weak deformations of the fibre.We theoretically examine the transport properties of non-ideal optical fibres with high numerical aperture. Using a simple spectral method, we derive the modes in perturbed or non-ideal fibres from the numerically evaluated modes of circularly symmetric fibres. We then consider the propagation through the fibre of Gaussian spots, projected onto the distal fibre end. The incident spots are of uniform, arbitrary polarization and positioned at any point on the fibre facet. We then evaluate the effect of propagation through the fibre in terms of various indices. In particular, we consider the motion of the centre of energy, the average polarization state and the average spin and orbital angular momentum. The study includes both step index and graded index optical fibres with symmetric and chiral deformations. We observe a fundamental difference between propagation in step index and graded index optical fibres: in the latter case, the centre of energy converges to the fibre axis as the light propagated along the fibre and in the former it moves erratically about the transverse plane. In addition, we find that circular polarization states are preserved for cylindrically symmetric fibres, of arbitrarily high numerical aperture. However, this property is destroyed by relatively weak deformations of the fibre.
Název v anglickém jazyce
Transport properties of optical fibres with high numerical apertures
Popis výsledku anglicky
We theoretically examine the transport properties of non-ideal optical fibres with high numerical aperture. Using a simple spectral method, we derive the modes in perturbed or non-ideal fibres from the numerically evaluated modes of circularly symmetric fibres. We then consider the propagation through the fibre of Gaussian spots, projected onto the distal fibre end. The incident spots are of uniform, arbitrary polarization and positioned at any point on the fibre facet. We then evaluate the effect of propagation through the fibre in terms of various indices. In particular, we consider the motion of the centre of energy, the average polarization state and the average spin and orbital angular momentum. The study includes both step index and graded index optical fibres with symmetric and chiral deformations. We observe a fundamental difference between propagation in step index and graded index optical fibres: in the latter case, the centre of energy converges to the fibre axis as the light propagated along the fibre and in the former it moves erratically about the transverse plane. In addition, we find that circular polarization states are preserved for cylindrically symmetric fibres, of arbitrarily high numerical aperture. However, this property is destroyed by relatively weak deformations of the fibre.We theoretically examine the transport properties of non-ideal optical fibres with high numerical aperture. Using a simple spectral method, we derive the modes in perturbed or non-ideal fibres from the numerically evaluated modes of circularly symmetric fibres. We then consider the propagation through the fibre of Gaussian spots, projected onto the distal fibre end. The incident spots are of uniform, arbitrary polarization and positioned at any point on the fibre facet. We then evaluate the effect of propagation through the fibre in terms of various indices. In particular, we consider the motion of the centre of energy, the average polarization state and the average spin and orbital angular momentum. The study includes both step index and graded index optical fibres with symmetric and chiral deformations. We observe a fundamental difference between propagation in step index and graded index optical fibres: in the latter case, the centre of energy converges to the fibre axis as the light propagated along the fibre and in the former it moves erratically about the transverse plane. In addition, we find that circular polarization states are preserved for cylindrically symmetric fibres, of arbitrarily high numerical aperture. However, this property is destroyed by relatively weak deformations of the fibre.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Complex Light and Optical Forces XIV 2020. Proceedings of SPIE
ISBN
978-151063357-5
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
112970Y
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
San Francisco
Datum konání akce
4. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000552296600015