A Novel Statistical Model for Predicting the Efficacy of Vagal Nerve Stimulation in Patients With Epilepsy (Pre-X-Stim) Is Applicable to Different EEG Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00543276" target="_blank" >RIV/68081731:_____/21:00543276 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00159816:_____/21:00074687 RIV/00216224:14110/21:00120112
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fnins.2021.635787/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fnins.2021.635787/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fnins.2021.635787" target="_blank" >10.3389/fnins.2021.635787</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Statistical Model for Predicting the Efficacy of Vagal Nerve Stimulation in Patients With Epilepsy (Pre-X-Stim) Is Applicable to Different EEG Systems
Popis výsledku v původním jazyce
Background: Identifying patients with intractable epilepsy who would benefit from therapeutic chronic vagal nerve stimulation (VNS) preoperatively remains a major clinical challenge. We have developed a statistical model for predicting VNS efficacy using only routine preimplantation electroencephalogram (EEG) recorded with the TruScan EEG device (Brazdil et al., 2019). It remains to be seen, however, if this model can be applied in different clinical settings.nObjective: To validate our model using EEG data acquired with a different recording system.nMethods: We identified a validation cohort of eight patients implanted with VNS, whose preimplantation EEG was recorded on the BrainScope device and who underwent the EEG recording according to the protocol. The classifier developed in our earlier work, named Pre-X-Stim, was then employed to classify these patients as predicted responders or non-responders based on the dynamics in EEG power spectra. Predicted and real-world outcomes were compared to establish the applicability of this classifier. In total, two validation experiments were performed using two different validation approaches (single classifier or classifier voting).nResults: The classifier achieved 75% accuracy, 67% sensitivity, and 100% specificity. Only two patients, both real-life responders, were classified incorrectly in both validation experiments.nConclusion: We have validated the Pre-X-Stim model on EEGs from a different recording system, which indicates its application under different technical conditions. Our approach, based on preoperative EEG, is easily applied and financially undemanding and presents great potential for real-world clinical use.
Název v anglickém jazyce
A Novel Statistical Model for Predicting the Efficacy of Vagal Nerve Stimulation in Patients With Epilepsy (Pre-X-Stim) Is Applicable to Different EEG Systems
Popis výsledku anglicky
Background: Identifying patients with intractable epilepsy who would benefit from therapeutic chronic vagal nerve stimulation (VNS) preoperatively remains a major clinical challenge. We have developed a statistical model for predicting VNS efficacy using only routine preimplantation electroencephalogram (EEG) recorded with the TruScan EEG device (Brazdil et al., 2019). It remains to be seen, however, if this model can be applied in different clinical settings.nObjective: To validate our model using EEG data acquired with a different recording system.nMethods: We identified a validation cohort of eight patients implanted with VNS, whose preimplantation EEG was recorded on the BrainScope device and who underwent the EEG recording according to the protocol. The classifier developed in our earlier work, named Pre-X-Stim, was then employed to classify these patients as predicted responders or non-responders based on the dynamics in EEG power spectra. Predicted and real-world outcomes were compared to establish the applicability of this classifier. In total, two validation experiments were performed using two different validation approaches (single classifier or classifier voting).nResults: The classifier achieved 75% accuracy, 67% sensitivity, and 100% specificity. Only two patients, both real-life responders, were classified incorrectly in both validation experiments.nConclusion: We have validated the Pre-X-Stim model on EEGs from a different recording system, which indicates its application under different technical conditions. Our approach, based on preoperative EEG, is easily applied and financially undemanding and presents great potential for real-world clinical use.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV19-04-00343" target="_blank" >NV19-04-00343: Predikce Efektu Stimulace u pacientů s Epilepsií (PRESEnCE)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Neuroscience
ISSN
1662-453X
e-ISSN
1662-453X
Svazek periodika
15
Číslo periodika v rámci svazku
11 May
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
635787
Kód UT WoS článku
000653635600001
EID výsledku v databázi Scopus
2-s2.0-85107209187