Sensing fields with ion in a dark state
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00545493" target="_blank" >RIV/68081731:_____/21:00545493 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11844/2599764/Sensing-fields-with-ion-in-a-dark-state/10.1117/12.2599764.short" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11844/2599764/Sensing-fields-with-ion-in-a-dark-state/10.1117/12.2599764.short</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2599764" target="_blank" >10.1117/12.2599764</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensing fields with ion in a dark state
Popis výsledku v původním jazyce
Trapped ions, as one of the pillars of progress in frequency metrology and quantum optics, require a complex experimental environment with well-defined conditions. We present that a feature called dark resonance, provided by the trapped ion itself, can be used as a versatile sensor for enhanced in-situ analysis of interacting fields. The dark resonance is formed in the lambda-type energy level scheme of a laser cooled 40Ca+ ion and corresponds to a fluorescence quenching. The method uses an analysis of the detection times of photons emitted from the upper energy level, which is excited via two optical dipole transitions. The two excitation lasers are phase locked to an optical frequency comb to reduce their linewidths and for precise control of their optical frequencies within the dark resonance. The amplitudes of interacting fields are obtained using the Fourier transform of the ion fluorescence or photon correlation measurements. This paper shows that the method can be applied for sensing of electric, magnetic and electromagnetic fields. Firstly, we present the potential for frequency analysis of the secular motion of a few-ion Coulomb crystal, which corresponds to the axial static electric field of a linear ion trap. Secondly, we demonstrate the optical frequency analysis of the employed lasers driving the two transitions. In the last case we show the analysis of an alternating magnetic field at the position of single ion.
Název v anglickém jazyce
Sensing fields with ion in a dark state
Popis výsledku anglicky
Trapped ions, as one of the pillars of progress in frequency metrology and quantum optics, require a complex experimental environment with well-defined conditions. We present that a feature called dark resonance, provided by the trapped ion itself, can be used as a versatile sensor for enhanced in-situ analysis of interacting fields. The dark resonance is formed in the lambda-type energy level scheme of a laser cooled 40Ca+ ion and corresponds to a fluorescence quenching. The method uses an analysis of the detection times of photons emitted from the upper energy level, which is excited via two optical dipole transitions. The two excitation lasers are phase locked to an optical frequency comb to reduce their linewidths and for precise control of their optical frequencies within the dark resonance. The amplitudes of interacting fields are obtained using the Fourier transform of the ion fluorescence or photon correlation measurements. This paper shows that the method can be applied for sensing of electric, magnetic and electromagnetic fields. Firstly, we present the potential for frequency analysis of the secular motion of a few-ion Coulomb crystal, which corresponds to the axial static electric field of a linear ion trap. Secondly, we demonstrate the optical frequency analysis of the employed lasers driving the two transitions. In the last case we show the analysis of an alternating magnetic field at the position of single ion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Photonics for Quantum 2021
ISBN
978-151064526-4
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
"Roč. 11844 (2021)"
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
online
Datum konání akce
12. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—