Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Prandtl's theory in the design of an experimental chamber for static pressure measurements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00547472" target="_blank" >RIV/68081731:_____/21:00547472 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26220/21:PU141924

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/21/20/6849" target="_blank" >https://www.mdpi.com/1424-8220/21/20/6849</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21206849" target="_blank" >10.3390/s21206849</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Prandtl's theory in the design of an experimental chamber for static pressure measurements

  • Popis výsledku v původním jazyce

    Pumping in vacuum chambers is part of the field of environmental electron microscopy. These chambers are separated from each other by a small-diameter aperture that creates a critical flow in the supersonic flow regime. The distribution of pressure and shock waves in the path of the primary electron beam passing through the differentially pumped chamber has a large influence on the quality of the resulting microscope image. As part of this research, an experimental chamber was constructed to map supersonic flow at low pressures. The shape of this chamber was designed using mathematical–physical analyses, which served not only as a basis for the design of its geometry, but especially for the correct choice of absolute and differential pressure sensors with respect to the cryogenic temperature generated in the supersonic flow. The mathematical and physical analyses presented here map the nature of the supersonic flow with large gradients of state variables at low pressures at the continuum mechanics boundary near the region of free molecule motion in which the Environmental Electron Microscope and its differentially pumped chamber operate, which has a significant impact on the resulting sharpness of the final image obtained by the microscope. The results of this work map the flow in and behind the Laval nozzle in the experimental chamber and are the initial basis that enabled the optimization of the design of the chamber based on Prandtl’s theory for the possibility of fitting it with pressure probes in such a way that they can map the flow in and behind the Laval nozzle.

  • Název v anglickém jazyce

    Application of Prandtl's theory in the design of an experimental chamber for static pressure measurements

  • Popis výsledku anglicky

    Pumping in vacuum chambers is part of the field of environmental electron microscopy. These chambers are separated from each other by a small-diameter aperture that creates a critical flow in the supersonic flow regime. The distribution of pressure and shock waves in the path of the primary electron beam passing through the differentially pumped chamber has a large influence on the quality of the resulting microscope image. As part of this research, an experimental chamber was constructed to map supersonic flow at low pressures. The shape of this chamber was designed using mathematical–physical analyses, which served not only as a basis for the design of its geometry, but especially for the correct choice of absolute and differential pressure sensors with respect to the cryogenic temperature generated in the supersonic flow. The mathematical and physical analyses presented here map the nature of the supersonic flow with large gradients of state variables at low pressures at the continuum mechanics boundary near the region of free molecule motion in which the Environmental Electron Microscope and its differentially pumped chamber operate, which has a significant impact on the resulting sharpness of the final image obtained by the microscope. The results of this work map the flow in and behind the Laval nozzle in the experimental chamber and are the initial basis that enabled the optimization of the design of the chamber based on Prandtl’s theory for the possibility of fitting it with pressure probes in such a way that they can map the flow in and behind the Laval nozzle.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-03909S" target="_blank" >GA19-03909S: Pokročilé simulace interakcí elektronů s plynem pro vysoce účinnou detekci sekundárních elektronů při dynamických in-situ experimentech v EREM.</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

    1424-8220

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    6849

  • Kód UT WoS článku

    000714802000001

  • EID výsledku v databázi Scopus

    2-s2.0-85117003015