Near field radiative heat transfer between macro-scale metallic surfaces at cryogenic temperatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00549394" target="_blank" >RIV/68081731:_____/21:00549394 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0011227520301582" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0011227520301582</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cryogenics.2020.103156" target="_blank" >10.1016/j.cryogenics.2020.103156</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Near field radiative heat transfer between macro-scale metallic surfaces at cryogenic temperatures
Popis výsledku v původním jazyce
Knowledge of radiative heat transfer between bodies at various temperatures is essential for efficient design of cryogenic devices. Radiative far-field heat transfer is commonly taken into account. Nevertheless, when the distance d between components of a device becomes small, smaller than the characteristic wavelength of Planck's far field thermal radiation, an additional heat transfer caused by thermal electromagnetic near-field starts to play a role. At cryogenic temperatures and micrometric distances, this near field heat transfer can exceed the far-field one by orders of magnitude. We report experimental results on near-field and far-field heat fluxes q transferred across a plane parallel vacuum gap d between pair of identical copper (RRR = 10) and tungsten (RRR = 1.5) samples. The heat flux q was measured over the distances d = 1–100 μm and for various temperatures T2 = 15–80 K of the hot sample and the temperature T1 down to 5 K of the cold one. We compare the copper and tungsten data with previously published results for normal metals Nb and NbN. For each pair of identical samples, the measured values of near-field thermal conductance of vacuum gap, KT = q/(T2 − T1), collapse into nearly a single dependence on the gap size d. Thus for specific metallic surfaces, this relation enables estimate the near field heat flux at cryogenic temperatures over micrometric distances.
Název v anglickém jazyce
Near field radiative heat transfer between macro-scale metallic surfaces at cryogenic temperatures
Popis výsledku anglicky
Knowledge of radiative heat transfer between bodies at various temperatures is essential for efficient design of cryogenic devices. Radiative far-field heat transfer is commonly taken into account. Nevertheless, when the distance d between components of a device becomes small, smaller than the characteristic wavelength of Planck's far field thermal radiation, an additional heat transfer caused by thermal electromagnetic near-field starts to play a role. At cryogenic temperatures and micrometric distances, this near field heat transfer can exceed the far-field one by orders of magnitude. We report experimental results on near-field and far-field heat fluxes q transferred across a plane parallel vacuum gap d between pair of identical copper (RRR = 10) and tungsten (RRR = 1.5) samples. The heat flux q was measured over the distances d = 1–100 μm and for various temperatures T2 = 15–80 K of the hot sample and the temperature T1 down to 5 K of the cold one. We compare the copper and tungsten data with previously published results for normal metals Nb and NbN. For each pair of identical samples, the measured values of near-field thermal conductance of vacuum gap, KT = q/(T2 − T1), collapse into nearly a single dependence on the gap size d. Thus for specific metallic surfaces, this relation enables estimate the near field heat flux at cryogenic temperatures over micrometric distances.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-00918S" target="_blank" >GA20-00918S: Souhra konvektivního přenosu tepla a turbulentních proudění s rotací v klasických a kvantových fázích kryogenního helia</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cryogenics
ISSN
0011-2275
e-ISSN
1879-2235
Svazek periodika
113
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
103156
Kód UT WoS článku
000618659400003
EID výsledku v databázi Scopus
2-s2.0-85099146919