Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00555027" target="_blank" >RIV/68081731:_____/21:00555027 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9662674" target="_blank" >https://ieeexplore.ieee.org/document/9662674</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/CinC53138.2021.9662674" target="_blank" >10.23919/CinC53138.2021.9662674</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables

  • Popis výsledku v původním jazyce

    Respiratory rate (RR) is one of the most important physiological parameters. In recent years, the RR estimation from PPGs widely used in smart devices has been promoted. The effect of respiration on PPGs manifests in three ways: BW (intensity variation), AM (amplitude variation), FM (frequency variation). In addition to sophisticated RR estimation methods, reliable results can be achieved with simple and efficient methods implementable in wearables. The BW signal (respiratory signal estimation, RS) can be obtained by linear filtering of the PPG. The RR estimation is based on BW extremes (sBW), BW autocorrelation extremes (aBW) and their spectra (SBW, ABW). Estimation of the AM RS requires PPG extremes detection and interpolation. The RR estimation is based on extremes of the AM signal (sAM), its autocorrelation (aAM) and their spectra (SAM, AAM). The fusion of RR estimates leads to more robust results. To test the algorithms, the annotated BIDMC and CapnoBase Datasets were used. RR estimates were made for 60 s sections. The simplest and the most accurate method for both datasets is the RR estimation based on sBW (RsBW). The median absolute error was 0.40 (0.16-1.09 interquartile range 25-75th) bpm for the 60s window, mean absolute error was 1.42 bpm.

  • Název v anglickém jazyce

    Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables

  • Popis výsledku anglicky

    Respiratory rate (RR) is one of the most important physiological parameters. In recent years, the RR estimation from PPGs widely used in smart devices has been promoted. The effect of respiration on PPGs manifests in three ways: BW (intensity variation), AM (amplitude variation), FM (frequency variation). In addition to sophisticated RR estimation methods, reliable results can be achieved with simple and efficient methods implementable in wearables. The BW signal (respiratory signal estimation, RS) can be obtained by linear filtering of the PPG. The RR estimation is based on BW extremes (sBW), BW autocorrelation extremes (aBW) and their spectra (SBW, ABW). Estimation of the AM RS requires PPG extremes detection and interpolation. The RR estimation is based on extremes of the AM signal (sAM), its autocorrelation (aAM) and their spectra (SAM, AAM). The fusion of RR estimates leads to more robust results. To test the algorithms, the annotated BIDMC and CapnoBase Datasets were used. RR estimates were made for 60 s sections. The simplest and the most accurate method for both datasets is the RR estimation based on sBW (RsBW). The median absolute error was 0.40 (0.16-1.09 interquartile range 25-75th) bpm for the 60s window, mean absolute error was 1.42 bpm.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 Computing in Cardiology (CinC)

  • ISBN

    978-166547916-5

  • ISSN

    2325-8861

  • e-ISSN

    2325-887X

  • Počet stran výsledku

    4

  • Strana od-do

    15

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Brno

  • Datum konání akce

    12. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku