Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00555027" target="_blank" >RIV/68081731:_____/21:00555027 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9662674" target="_blank" >https://ieeexplore.ieee.org/document/9662674</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CinC53138.2021.9662674" target="_blank" >10.23919/CinC53138.2021.9662674</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables
Popis výsledku v původním jazyce
Respiratory rate (RR) is one of the most important physiological parameters. In recent years, the RR estimation from PPGs widely used in smart devices has been promoted. The effect of respiration on PPGs manifests in three ways: BW (intensity variation), AM (amplitude variation), FM (frequency variation). In addition to sophisticated RR estimation methods, reliable results can be achieved with simple and efficient methods implementable in wearables. The BW signal (respiratory signal estimation, RS) can be obtained by linear filtering of the PPG. The RR estimation is based on BW extremes (sBW), BW autocorrelation extremes (aBW) and their spectra (SBW, ABW). Estimation of the AM RS requires PPG extremes detection and interpolation. The RR estimation is based on extremes of the AM signal (sAM), its autocorrelation (aAM) and their spectra (SAM, AAM). The fusion of RR estimates leads to more robust results. To test the algorithms, the annotated BIDMC and CapnoBase Datasets were used. RR estimates were made for 60 s sections. The simplest and the most accurate method for both datasets is the RR estimation based on sBW (RsBW). The median absolute error was 0.40 (0.16-1.09 interquartile range 25-75th) bpm for the 60s window, mean absolute error was 1.42 bpm.
Název v anglickém jazyce
Respiratory Rate Estimation Using the Photoplethysmogram: Towards the Implementation in Wearables
Popis výsledku anglicky
Respiratory rate (RR) is one of the most important physiological parameters. In recent years, the RR estimation from PPGs widely used in smart devices has been promoted. The effect of respiration on PPGs manifests in three ways: BW (intensity variation), AM (amplitude variation), FM (frequency variation). In addition to sophisticated RR estimation methods, reliable results can be achieved with simple and efficient methods implementable in wearables. The BW signal (respiratory signal estimation, RS) can be obtained by linear filtering of the PPG. The RR estimation is based on BW extremes (sBW), BW autocorrelation extremes (aBW) and their spectra (SBW, ABW). Estimation of the AM RS requires PPG extremes detection and interpolation. The RR estimation is based on extremes of the AM signal (sAM), its autocorrelation (aAM) and their spectra (SAM, AAM). The fusion of RR estimates leads to more robust results. To test the algorithms, the annotated BIDMC and CapnoBase Datasets were used. RR estimates were made for 60 s sections. The simplest and the most accurate method for both datasets is the RR estimation based on sBW (RsBW). The median absolute error was 0.40 (0.16-1.09 interquartile range 25-75th) bpm for the 60s window, mean absolute error was 1.42 bpm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 Computing in Cardiology (CinC)
ISBN
978-166547916-5
ISSN
2325-8861
e-ISSN
2325-887X
Počet stran výsledku
4
Strana od-do
15
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Brno
Datum konání akce
12. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—