Laser powder bed fusion and casting for an advanced hybrid prototype mold
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00565280" target="_blank" >RIV/68081731:_____/22:00565280 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1526612522005023" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1526612522005023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmapro.2022.07.034" target="_blank" >10.1016/j.jmapro.2022.07.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laser powder bed fusion and casting for an advanced hybrid prototype mold
Popis výsledku v původním jazyce
One of the factors limiting the throughput of injection molding is cooling time, which is the most significant part of the total cycle time. The cooling efficiency of molds can be considerably improved with additive manufacturing techniques. A 3D printed injection mold with conformal cooling channels reduces cooling time by 30-40 %. However, the cooling efficiency of these molds can be further improved with a multi-material approach and the use of materials with excellent thermal and mechanical properties. In this study, we propose a hybrid mold insert made of steel and copper, produced with the combination of Laser Powder Bed Fusion (L-PBF) and casting. The steel shell that contains conformal cooling channels was printed by L-PBF. Then this shell was cast with copper. We found that the hybrid mold insert we developed has lower residual cooling time and heat extraction is more uniform than the conventional printed steel insert. The developed hybrid mold insert enables a reduction of residual cooling time by 15 %.
Název v anglickém jazyce
Laser powder bed fusion and casting for an advanced hybrid prototype mold
Popis výsledku anglicky
One of the factors limiting the throughput of injection molding is cooling time, which is the most significant part of the total cycle time. The cooling efficiency of molds can be considerably improved with additive manufacturing techniques. A 3D printed injection mold with conformal cooling channels reduces cooling time by 30-40 %. However, the cooling efficiency of these molds can be further improved with a multi-material approach and the use of materials with excellent thermal and mechanical properties. In this study, we propose a hybrid mold insert made of steel and copper, produced with the combination of Laser Powder Bed Fusion (L-PBF) and casting. The steel shell that contains conformal cooling channels was printed by L-PBF. Then this shell was cast with copper. We found that the hybrid mold insert we developed has lower residual cooling time and heat extraction is more uniform than the conventional printed steel insert. The developed hybrid mold insert enables a reduction of residual cooling time by 15 %.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Manufacturing Processes
ISSN
1526-6125
e-ISSN
2212-4616
Svazek periodika
81
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
748-758
Kód UT WoS článku
000890918700006
EID výsledku v databázi Scopus
2-s2.0-85134838211