Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F23%3A00575367" target="_blank" >RIV/68081731:_____/23:00575367 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s42005-023-01336-4" target="_blank" >https://www.nature.com/articles/s42005-023-01336-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42005-023-01336-4" target="_blank" >10.1038/s42005-023-01336-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope
Popis výsledku v původním jazyce
Birefringent microspheres, trapped in vacuum and set into rotation by circularly polarised light, demonstrate remarkably stable translational motion. This is in marked contrast to isotropic particles in similar conditions. Here we demonstrate that this stability is obtained because the fast rotation of these birefringent spheres reduces the effect of azimuthal spin forces created by the inhomogeneous optical spin of circularly polarised light. At reduced pressures, the unique profile of these rotationally averaged, effective azimuthal forces results in the formation of nano-scale limit cycles. We demonstrate feedback cooling of these non-equilibrium oscillators, resulting in effective temperatures on the order of a milliKelvin. The principles we elaborate here can inform the design of high-stability rotors carrying enhanced centripetal loads or result in more efficient cooling schemes for autonomous limit cycle oscillations. Ultimately, this latter development could provide experimental access to non-equilibrium quantum effects within the mesoscopic regime.
Název v anglickém jazyce
Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope
Popis výsledku anglicky
Birefringent microspheres, trapped in vacuum and set into rotation by circularly polarised light, demonstrate remarkably stable translational motion. This is in marked contrast to isotropic particles in similar conditions. Here we demonstrate that this stability is obtained because the fast rotation of these birefringent spheres reduces the effect of azimuthal spin forces created by the inhomogeneous optical spin of circularly polarised light. At reduced pressures, the unique profile of these rotationally averaged, effective azimuthal forces results in the formation of nano-scale limit cycles. We demonstrate feedback cooling of these non-equilibrium oscillators, resulting in effective temperatures on the order of a milliKelvin. The principles we elaborate here can inform the design of high-stability rotors carrying enhanced centripetal loads or result in more efficient cooling schemes for autonomous limit cycle oscillations. Ultimately, this latter development could provide experimental access to non-equilibrium quantum effects within the mesoscopic regime.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000476" target="_blank" >EF15_003/0000476: Holografická endoskopie pro in vivo aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMMUNICATIONS PHYSICS
ISSN
2399-3650
e-ISSN
2399-3650
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
238
Kód UT WoS článku
001058778400002
EID výsledku v databázi Scopus
2-s2.0-85169685984