Detection of microplastics and nanoplastics: Are Raman tweezers and enhanced Raman methods the solution for sub 20 µm particles?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F24%3A00604142" target="_blank" >RIV/68081731:_____/24:00604142 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.epj-conferences.org/articles/epjconf/abs/2024/19/epjconf_eosam2024_10001/epjconf_eosam2024_10001.html" target="_blank" >https://www.epj-conferences.org/articles/epjconf/abs/2024/19/epjconf_eosam2024_10001/epjconf_eosam2024_10001.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/202430910001" target="_blank" >10.1051/epjconf/202430910001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of microplastics and nanoplastics: Are Raman tweezers and enhanced Raman methods the solution for sub 20 µm particles?
Popis výsledku v původním jazyce
Despite the significant progress in the detection of nano and small microplastics, the detection of such particles still faces problems caused by the limitations of current detection methods and instruments. Herein, we present the optical methods for detection of sub 20 µm microplastics. We introduce optical methods for the analysis of individual microplastics and the fabrication of a substrate using plasmonic particles to detect plastic nanoparticles. We summarize recent experimental activities involving the construction of portable Raman tweezers that can be used for optical trapping and analysis of microplastics with size from a few hundred nanometers to lower tens of micrometers. Optical trapping is complemented by another optical manipulation method: nanoimprinting of plasmonic nanoparticles that enables create the „active” aggregates that can be used for Surface Enhanced Raman Spectroscopy (SERS) detection in microfluidic circuits and as plasmon-enhanced thermoplasmonic concentrators for nanoscale particulate matter such as nanoplastics. The principle of nanoimprinting is based on the dominance of the scattering force (compared to the gradient force) for plasmonic particles, this force pushes the particles in the direction of propagation of the light beam. This phenomenon enables the preparation of an aggregate comprising of plasmonic particles that can serve as a substrate for SERS and as a source of the temperature gradient that is able to attract dielectric nanoparticles. In both cases, enhanced sensitivity is demonstrated, allowing the detection of nanoplastics/molecules of size/concentration orders of magnitude lower than what can be achieved by Raman spectroscopy. This study demonstrates that the combination of two optical manipulation techniques with Raman spectroscopy is capable of filling the technological gap in the detection of plastic particles ranging in size from a few tens of nanometers to 20 micrometers. This is an ideal solution for the detection of very small microplastics, which currently lacks a suitable technology.
Název v anglickém jazyce
Detection of microplastics and nanoplastics: Are Raman tweezers and enhanced Raman methods the solution for sub 20 µm particles?
Popis výsledku anglicky
Despite the significant progress in the detection of nano and small microplastics, the detection of such particles still faces problems caused by the limitations of current detection methods and instruments. Herein, we present the optical methods for detection of sub 20 µm microplastics. We introduce optical methods for the analysis of individual microplastics and the fabrication of a substrate using plasmonic particles to detect plastic nanoparticles. We summarize recent experimental activities involving the construction of portable Raman tweezers that can be used for optical trapping and analysis of microplastics with size from a few hundred nanometers to lower tens of micrometers. Optical trapping is complemented by another optical manipulation method: nanoimprinting of plasmonic nanoparticles that enables create the „active” aggregates that can be used for Surface Enhanced Raman Spectroscopy (SERS) detection in microfluidic circuits and as plasmon-enhanced thermoplasmonic concentrators for nanoscale particulate matter such as nanoplastics. The principle of nanoimprinting is based on the dominance of the scattering force (compared to the gradient force) for plasmonic particles, this force pushes the particles in the direction of propagation of the light beam. This phenomenon enables the preparation of an aggregate comprising of plasmonic particles that can serve as a substrate for SERS and as a source of the temperature gradient that is able to attract dielectric nanoparticles. In both cases, enhanced sensitivity is demonstrated, allowing the detection of nanoplastics/molecules of size/concentration orders of magnitude lower than what can be achieved by Raman spectroscopy. This study demonstrates that the combination of two optical manipulation techniques with Raman spectroscopy is capable of filling the technological gap in the detection of plastic particles ranging in size from a few tens of nanometers to 20 micrometers. This is an ideal solution for the detection of very small microplastics, which currently lacks a suitable technology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2101-6275
e-ISSN
—
Počet stran výsledku
2
Strana od-do
10001
Název nakladatele
EDP Sciences
Místo vydání
Les Ulis
Místo konání akce
Naples
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—