Predicting eye movements in multiple object tracking using neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081740%3A_____%2F16%3A00466857" target="_blank" >RIV/68081740:_____/16:00466857 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10336704
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2857491.2857502" target="_blank" >http://dx.doi.org/10.1145/2857491.2857502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2857491.2857502" target="_blank" >10.1145/2857491.2857502</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting eye movements in multiple object tracking using neural networks
Popis výsledku v původním jazyce
In typical Multiple Object Tracking (MOT) paradigm, the participant's task is to track targets amongst distractors for several seconds. Understanding gaze strategies in MOT can help us reveal attentional mechanisms in dynamic tasks. Previous attempts relied on analytical strategies (such as averaging object positions). An alternative approach is to find this relationship using machine learning technique. After preprocessing, we assembled a dataset with 48,000 datapoints, representing 1534 MOT trials or 2.5 hours. In this study, we used feedforward neural networks to predict gaze position and compared predicted gaze with analytical strategies from previous studies using median distance. Our results showed that neural networks were able to predict eye positions better than current strategies. Particularly, they performed better when we trained the network with all objects, not targets only. It supports the hypothesis that people are influenced by distractor positions during tracking.
Název v anglickém jazyce
Predicting eye movements in multiple object tracking using neural networks
Popis výsledku anglicky
In typical Multiple Object Tracking (MOT) paradigm, the participant's task is to track targets amongst distractors for several seconds. Understanding gaze strategies in MOT can help us reveal attentional mechanisms in dynamic tasks. Previous attempts relied on analytical strategies (such as averaging object positions). An alternative approach is to find this relationship using machine learning technique. After preprocessing, we assembled a dataset with 48,000 datapoints, representing 1534 MOT trials or 2.5 hours. In this study, we used feedforward neural networks to predict gaze position and compared predicted gaze with analytical strategies from previous studies using median distance. Our results showed that neural networks were able to predict eye positions better than current strategies. Particularly, they performed better when we trained the network with all objects, not targets only. It supports the hypothesis that people are influenced by distractor positions during tracking.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AN - Psychologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Eye Tracking Research and Applications Symposium (ETRA)
ISBN
978-145034125-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
271-274
Název nakladatele
Association for Computing Machinery
Místo vydání
Charleston
Místo konání akce
Charleston
Datum konání akce
14. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389809700045