Exploring the Contribution of Isochrony-based Features to Computerized Assessment of Handwriting Disabilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081740%3A_____%2F22%3A00562300" target="_blank" >RIV/68081740:_____/22:00562300 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Contribution of Isochrony-based Features to Computerized Assessment of Handwriting Disabilities
Popis výsledku v původním jazyce
Approximately 30–60 % of the time children spend in school is associated with handwriting. However, up to 30 % of them experience handwriting disabilities (HD), which lead to a decrease in their academic performance. Current HD assessment methods are not unified and show signs of subjectivity which can lead to misdiagnosis. The aim of this paper is to propose a new approach to objective HD assessment based on the principle of movement isochrony. For this purpose, we used a database of 137 children attending a primary school, who performed a transcription and dictation task, and who were associated with a BHK (Concise Evaluation Scale for Children's Handwriting) score. Employing a machine learning model, we were able to estimate this score with 18 % error. An interpretation of the model suggests that the isochrony-based features could bring new benefits to the objective assessment of HD.
Název v anglickém jazyce
Exploring the Contribution of Isochrony-based Features to Computerized Assessment of Handwriting Disabilities
Popis výsledku anglicky
Approximately 30–60 % of the time children spend in school is associated with handwriting. However, up to 30 % of them experience handwriting disabilities (HD), which lead to a decrease in their academic performance. Current HD assessment methods are not unified and show signs of subjectivity which can lead to misdiagnosis. The aim of this paper is to propose a new approach to objective HD assessment based on the principle of movement isochrony. For this purpose, we used a database of 137 children attending a primary school, who performed a transcription and dictation task, and who were associated with a BHK (Concise Evaluation Scale for Children's Handwriting) score. Employing a machine learning model, we were able to estimate this score with 18 % error. An interpretation of the model suggests that the isochrony-based features could bring new benefits to the objective assessment of HD.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
50101 - Psychology (including human - machine relations)
Návaznosti výsledku
Projekt
<a href="/cs/project/TL03000287" target="_blank" >TL03000287: Software pro pokročilou diagnostiku grafomotorických obtíží</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů