Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F19%3A00504422" target="_blank" >RIV/68081766:_____/19:00504422 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/19:10394305 RIV/60460709:41330/19:79543
Výsledek na webu
<a href="http://dx.doi.org/10.1098/rsif.2018.0940" target="_blank" >http://dx.doi.org/10.1098/rsif.2018.0940</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsif.2018.0940" target="_blank" >10.1098/rsif.2018.0940</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions
Popis výsledku v původním jazyce
Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.
Název v anglickém jazyce
Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions
Popis výsledku anglicky
Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10613 - Zoology
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP505%2F11%2FP572" target="_blank" >GPP505/11/P572: Informační hodnota specifických struktur ve zpěvu lindušky lesní: experimentální test hypotéz o funkci ptačího zpěvu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Royal Society Interface
ISSN
1742-5689
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
153
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
20180940
Kód UT WoS článku
000466431900007
EID výsledku v databázi Scopus
2-s2.0-85064721811