Algorithm 1017: fuzzyreg: an R package for fitting fuzzy regression models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F21%3A00544030" target="_blank" >RIV/68081766:_____/21:00544030 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/21:PU141150 RIV/00216224:14310/21:00124079
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3451389" target="_blank" >https://dl.acm.org/doi/10.1145/3451389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3451389" target="_blank" >10.1145/3451389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algorithm 1017: fuzzyreg: an R package for fitting fuzzy regression models
Popis výsledku v původním jazyce
Fuzzy regression provides an alternative to statistical regression when the model is indefinite, the relationships between model parameters are vague, the sample size is low, or the data are hierarchically structured. Such cases allow to consider the choice of a regression model based on the fuzzy set theory. In fuzzyreg, we implement fuzzy linear regression methods that differ in the expectations of observational data types, outlier handling, and parameter estimation method. We provide a wrapper function that prepares data for fitting fuzzy linear models with the respective methods from a syntax established in R for fitting regression models. The function fuzzylm thus provides a novel functionality for R through standardized operations with fuzzy numbers. Additional functions allow for conversion of real-value variables to be fuzzy numbers, printing, summarizing, model plotting, and calculation of model predictions from new data using supporting functions that perform arithmetic operations with triangular fuzzy numbers. Goodness of fit and total error of the fit measures allow model comparisons. The package contains a dataset named bats with measurements of temperatures of hibernating bats and the mean annual surface temperature reflecting the climate at the sampling sites. The predictions from fuzzy linear models fitted to this dataset correspond well to the observed biological phenomenon. Fuzzy linear regression has great potential in predictive modeling where the data structure prevents statistical analysis and the modeled process exhibits inherent fuzziness.
Název v anglickém jazyce
Algorithm 1017: fuzzyreg: an R package for fitting fuzzy regression models
Popis výsledku anglicky
Fuzzy regression provides an alternative to statistical regression when the model is indefinite, the relationships between model parameters are vague, the sample size is low, or the data are hierarchically structured. Such cases allow to consider the choice of a regression model based on the fuzzy set theory. In fuzzyreg, we implement fuzzy linear regression methods that differ in the expectations of observational data types, outlier handling, and parameter estimation method. We provide a wrapper function that prepares data for fitting fuzzy linear models with the respective methods from a syntax established in R for fitting regression models. The function fuzzylm thus provides a novel functionality for R through standardized operations with fuzzy numbers. Additional functions allow for conversion of real-value variables to be fuzzy numbers, printing, summarizing, model plotting, and calculation of model predictions from new data using supporting functions that perform arithmetic operations with triangular fuzzy numbers. Goodness of fit and total error of the fit measures allow model comparisons. The package contains a dataset named bats with measurements of temperatures of hibernating bats and the mean annual surface temperature reflecting the climate at the sampling sites. The predictions from fuzzy linear models fitted to this dataset correspond well to the observed biological phenomenon. Fuzzy linear regression has great potential in predictive modeling where the data structure prevents statistical analysis and the modeled process exhibits inherent fuzziness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Mathematical Software
ISSN
0098-3500
e-ISSN
1557-7295
Svazek periodika
47
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
29
Kód UT WoS článku
000668366600010
EID výsledku v databázi Scopus
2-s2.0-85103601641