Automatic identification of bird females using egg phenotype
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F22%3A00548861" target="_blank" >RIV/68081766:_____/22:00548861 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/22:43906062 RIV/00216208:11310/22:10446491 RIV/00216224:14310/22:00125955
Výsledek na webu
<a href="https://academic.oup.com/zoolinnean/advance-article-abstract/doi/10.1093/zoolinnean/zlab051/6357656?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/zoolinnean/advance-article-abstract/doi/10.1093/zoolinnean/zlab051/6357656?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/zoolinnean/zlab051" target="_blank" >10.1093/zoolinnean/zlab051</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic identification of bird females using egg phenotype
Popis výsledku v původním jazyce
Individual identification is crucial for studying animal ecology and evolution. In birds this is often achieved by capturing and tagging. However, these methods are insufficient for identifying individuals/species that are secretive or difficult to catch. Here, we employ an automatic analytical approach to predict the identity of bird females based on the appearance of their eggs, using the common cuckoo (Cuculus canorus) as a model species. We analysed 192 cuckoo eggs using digital photography and spectrometry. Cuckoo females were identified from genetic sampling of nestlings, allowing us to determine the accuracy of automatic (unsupervised and supervised) and human assignment. Finally, we used a novel analytical approach to identify eggs that were not genetically analysed. Our results show that individual cuckoo females lay eggs with a relatively constant appearance and that eggs laid by more genetically distant females differ more in colour. Unsupervised clustering had similar cluster accuracy to experienced human observers, but supervised methods were able to outperform humans. Our novel method reliably assigned a relatively high number of eggs without genetic data to their mothers. Therefore, this is a cost-effective and minimally invasive method for increasing sample sizes, which may facilitate research on brood parasites and other avian species.
Název v anglickém jazyce
Automatic identification of bird females using egg phenotype
Popis výsledku anglicky
Individual identification is crucial for studying animal ecology and evolution. In birds this is often achieved by capturing and tagging. However, these methods are insufficient for identifying individuals/species that are secretive or difficult to catch. Here, we employ an automatic analytical approach to predict the identity of bird females based on the appearance of their eggs, using the common cuckoo (Cuculus canorus) as a model species. We analysed 192 cuckoo eggs using digital photography and spectrometry. Cuckoo females were identified from genetic sampling of nestlings, allowing us to determine the accuracy of automatic (unsupervised and supervised) and human assignment. Finally, we used a novel analytical approach to identify eggs that were not genetically analysed. Our results show that individual cuckoo females lay eggs with a relatively constant appearance and that eggs laid by more genetically distant females differ more in colour. Unsupervised clustering had similar cluster accuracy to experienced human observers, but supervised methods were able to outperform humans. Our novel method reliably assigned a relatively high number of eggs without genetic data to their mothers. Therefore, this is a cost-effective and minimally invasive method for increasing sample sizes, which may facilitate research on brood parasites and other avian species.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10613 - Zoology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-12262S" target="_blank" >GA17-12262S: Reprodukční strategie obligátního hnízdního parazita: výběr hostitele, alokace pohlaví mláďat a individuální úspěšnost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zoological Journal of the Linnean Society
ISSN
0024-4082
e-ISSN
1096-3642
Svazek periodika
195
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
33-44
Kód UT WoS článku
000764863400001
EID výsledku v databázi Scopus
2-s2.0-85132996913